
(12) INTERNATIONAL APPLICATION PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization l l lll l lll l ll l lll l l lllll llll ll l

International Bureau (10) International Publication Number

(43) International Publication Date WO 2020/234792 Al
26 November 2020 (26.11.2020)

(51) International Patent Classification: 1-20133 Milano (IT). BRONDOLIN, Rolando; c/o Politec¬
G06F 9/50 (2006.01) nico di Milano, Piazza Leonardo da Vinci, 32, 1-20133 Mi¬

(21) International Application Number:
lano (IT). BACIS, Marco; c/o Politecnico di Milano, Piaz¬

PCT/IB2020/054775
za Leonardo da Vinci, 32, 1-20133 Milano (IT).

(74) Agent: DI BERNARDO, Antonio et al.; c/o THINX S.r.l.,
(22) International Filing Date:

Piazzale Luigi Cadoma, 10, 1-20123 Milan (IT).
20 May 2020 (20.05.2020)

(81) Designated States (unless otherwise indicated, for every
(25) Filing Language: English

kind of national protection av ailable) . AE, AG, AL, AM,

(26) Publication Language: English AO, AT, AU, AZ , BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,

(30) Priority Data:
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

19175546. 1 2 1 May 2019 (21.05.2019) EP
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,

(71) Applicant: POLITECNICO DI I .A O [IT/IT]; Piazza KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,

Leonardo da Vinci, 32, 20133 Milano (IT). MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

(72) Inventors: SANTAMBROGIO, Marco Domenico; c/o
Politecnico di Milano, Piazza Leonardo da Vinci, 32,

(54) Title: AN FPGA-AS-A-SERVICE SYSTEM FOR ACCELERATED SERVERLESS COMPUTING

Fig-1

(57) Abstract: The present invention proposes a hardware accelerators management system (1) for containerized and serverless envi¬
ronments. The system (1) at least comprises a domain layer on which a plurality of application containers and functions (60, 61) are
implemented, a hardware layer in which a set of hardware accelerators are implemented and a software layer configured for abstracting
the application containers and the functions (60, 6 1) of the domain layer from the hardware layer, wherein the system (1) comprises a
hardware interface (80, 90) to send tasks to and reconfigure at least a portion of the processing means (70) implemented in the hardware
layer. The system (1) also comprises a software structure (40, 50, 63) that shares hardware accelerators of the hardware layer between
application containers and functions (60, 6 1) of the domain layer. Advantageously, the software structure (40, 50, 63) performs sched¬
uling and optimization algorithms on the resource allocations of the hardware accelerators of the hardware layer for the application
containers and functions (60, 61) of the domain layer in terms of device time and/or space slot of utilization. In detail, the scheduling

[Continued on next page]

SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available) : ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— of inventorship (Rule 4 .17(iv))

Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

and optimization algorithms comprises a monitoring structure interfacing with processing means and with the software layer for read¬
ing performance metrics of at least one processing means (70). Advantageously, the software structure comprises at least one device
manager (50) component connected with the hardware interface (80, 90) and at least one remote library (63) component to interface
each application container and function (60, 6 1) with the at least one device manager (50) component concurrently.

AN FPGA-AS-A-SERVICE SYSTEM FOR ACCELERATED SERVERLESS COMPUTING

DESCRIPTION

TECHNICAL FIELD

The present invention refers to the field of software systems. Particularly, the present invention

relates to the provision of computing power as a service. In detail, the present invention proposes

a system for accelerated serverless computing based upon hardware resources such as Field-

Programmable-Gate-Array (FPGA), Application-Specific-Integrated-Circuit (ASIC), Digital Signal

Processor (DSP) and Graphic Processing Unit (GPU) boards.

STATE OF THE ART

The last decade saw the exponential growth of cloud computing as the primary technology to

develop, deploy and maintain complex infrastructures and services at scale. Cloud computing

allows consuming resources on-demand and designing web services following a cloud-native

approach is fundamental to dynamically scale performance. However, some workloads may require

computing power that current CPUs are not able to provide and, for this reason, heterogeneous

computing is becoming an interesting solution to continue to meet Service Level Agreements

(SLAs).

Workloads such as web search [1], image processing [2], compression [3], database operations

[4], neural network inference [5] and many others can benefit from the use of specialized

architectures and accelerators like Field Programmable Gate Arrays (FPGAs) Application-Specific-

Integrated-Circuits (ASICs), Digital Signal Processors (DSPs) and Graphic Processing Units

(GPUs) to timely react to the end users requests.

Particularly, the introduction of the AWS F 1 instances [6] as well as project Catapult [7] and project

Brainwave [8]from Microsoft demonstrates that FPGAs will play a key role in the cloud in the next

years. To exploit FPGAs at their best in the cloud, hardware accelerators should be designed to

optimize latency [7]

Known FPGAs cloud environments can be classified by communication method, sharing

mechanism and computational model exploited.

The first distinction is the communication method used to access the shared or virtualized device.

PCIe-Passthrough is the lowest-level method available, as it works by directly connecting a single

Virtual Machine (VM) or container to the FPGA device. This communication level is used by the

AWS F 1 instances. With Paravirtualization the requesting application VM is connected to a host

device driver, which virtualizes the access to the resources. This mechanism is used by pvFPGA

[9]. The API Remoting mechanisms is the most used in the analyzed state of the art [10], [1 1], [12],

[13], and it works by defining a custom API to remotely access the device. It allows multiple

applications to control the shared device and to perform both space and time sharing.

A special API Remoting technique is represented by the work in [14], as in this case the system

exposes a microservice for each accelerator, and not a general API for the entire system.

Finally, Direct Network Access is used by Catapult [7] This method works by exposing the FPGA

through its network interface, thus enabling a low-latency access.

The second classification is based on the sharing mechanism. Space sharing as disclosed in [15],

[1 1], [13] employs FPGA virtualization using Partial Dynamic Reconfiguration (PDR) or Overlays to

run multiple accelerators on the same FPGA, which are used by different applications. Space

sharing allows to use the entire resources on the device (in terms of logic blocks), but requires

careful handling of the accelerators to minimize the reconfiguration time. Time-Sharing as disclosed

in [7], [9], [10], [12], [14], works by multiplexing multiple requests from different applications on the

same accelerator in the FPGA board. In this case, the challenge is to efficiently schedule the

incoming requests to minimize latency on the application side and managing memory accesses to

fit in the I/O bandwidth.

The last classification is related to the computational model.

In a Batch System [9], [1 1], [13], [15], the workloads (and the connection to the FPGA) are seen as

limited in time. Therefore, the scheduling and allocation of workloads are computed based on the

lifetime of each job. In Service-Based systems such as in [7], [10], [12], [14], instead, the FPGAs

are continuously working by receiving and processing requests from the system or the application.

Works such as [14] directly expose the underlying FPGA accelerator as a standalone service.

Regardless of how the FPGAs cloud environment is configured, requests from the outside network

can come at unpredictable rates and they usually cannot be batched, thus minimizing latency

becomes fundamental. The requests unpredictability can lead to an underutilization of the FPGAs,

thus reserving one FPGA for each service that needs it can result in a waste of resources.

From a cloud provider perspective, sharing becomes then fundamental to improve time utilization

of the FPGA and the serverless computing paradigm can be a promising approach [16].

Serverless computing is an architectural pattern for cloud applications where server management

is delegated to the cloud provider. Each application functionality is deployed by the user as a

function and scheduled, executed, scaled and billed depending on the exact need of the moment.

Indeed, sharing the FPGA across different services seems like an interesting idea, as many

compute intensive kernels may be accessed by more than one service. Moreover, FPGA sharing

is a desirable feature not only for end users looking for cloud cost savings but also for cloud

providers, because they can reduce the Total Cost of Ownership (TCO) while providing an

hardware acceleration service to their customers.

For example, US 10,489,195 proposes a method for FPGA accelerated serverless computing,

which comprises receiving, from a user, a definition of a serverless computing task comprising one

or more functions to be executed. A task scheduler performs an initial placement of the serverless

computing task to a first host determined to be a first optimal host for executing the serverless

computing task. The task scheduler determines a supplemental placement of a first function to a

second host determined to be a second optimal host for accelerating execution of the first function,

wherein the first function is not able to accelerate by one or more FPGAs in the first host. The

serverless computing task is executed on the first host and the second host according to the initial

placement and the supplemental placement.

Moreover, [6] discloses that for an AWS F 1 instance , in order to share an accelerator in a cloud-

native application it is sufficient to build a Docker container [17] on top of it and expose Application

Programming Interfaces (APIs) that other containers can consume. On the one hand, this approach

provides maximum performance as the container has a direct link to the FPGA through PCI

Express. On the other hand, this container has to be privileged, and this represents a security issue.

It is clear that, from a cloud provider perspective, exposing an FPGA sharing service requires to

isolate and decouple the code provided by the user from the actual execution of the accelerator

onto the FPGA, and to allocate and deallocate the devices to serverless functions automatically in

order to ensure the security of the data managed by the service and avoid malfunctioning thereof.

Although the previous works in the literature provide solutions to share consistently an FPGA

across multiple workloads, to the best of the knowledge of the Applicant, a systematic way to

manage FPGAs in a truly as-a-Service fashion is still missing, and this is key to achieve accelerated

serverless computing.

Within this context, the Applicant proposes that compute-intensive kernels should be accelerated

with shared FPGAs handled transparently by the serverless infrastructure: this will maximize

utilization while reaching near-native execution latency.

Particularly, in order to exploit FPGAs in cloud-native workloads, kernels should be able to quickly

react to unpredictable and spiky requests coming from the external network. For this reason, cloud

native accelerators should be optimized also for latency and not only of throughput. On the

contrary, FPGAs allocated exclusively to a single cloud service (typically hosted on a Virtual

Machine (VM)) will often face idling periods and, in general, low utilization rates.

SUMMARY OF THE INVENTION

It is an objective of the present invention to overcome the drawbacks of the prior art.

Particularly, it is an object of the present invention to propose a serverless system for managing

the provision of accelerated computing in an efficient manner.

It is a further object of the present invention to propose an accelerated computing serverless system

configured to share resources at the hardware layer - such as Field-Programmable-Gate-Array

(FPGA), Application-Specific-Integrated-Circuits (ASIC) and Graphic Processing Unit (GPU)

boards - among a plurality of function requiring acceleration.

A further object of the present invention is to propose an Accelerated Computing-as-a-Service,

preferably a FPGA-as-a-Service, infrastructure that efficiently isolates accelerated kernels and

provides a transparent way to access them remotely through a framework for writing programs that

execute across heterogeneous platforms, such as OpenCL.

In a non-limiting manner, such an infrastructure provides for:

• a distributed architecture that supports serverless computing with FPGAs, ASICs and/or GPU

along with a sharing mechanism (in time and space) able to increase the utilization of the

accelerators and minimize the latency overhead w.r.t. native execution;

• an abstraction layer that isolates and decouples the physical accelerators from their CPU code,

avoiding privileged access to the FPGAs, ASICs and/or GPU and enabling transparent offloading

of compute-intensive tasks without code rewriting, and

• a central and device-level allocation and scheduling mechanism and components to enable

functions autoscaling in the proposed serverless system

Particularly, it is an object of the present invention to propose a system for serverless accelerated

computing - preferably FPGA-based. The system is substantially composed of a central

component (i.e., Accelerator Registry), which integrates with an orchestrator to provide automatic

allocation of devices and function instances. In addition, other components (i.e., Remote Library

and Device Managers) are designed to isolate the user code from the actual hardware acceleration.

The system is able to employ FPGA accelerator sharing in an isolated, automatic and transparent

way.

These and further objects of the present invention will be more clear from the following description

and from the annexed claims, which are an integral part of the present description.

According to a first aspect, the invention therefore relates to a hardware accelerators management

system for containerized and serverless environments. Such a system at least comprises:

a domain layer on which a plurality of application containers and serverless functions are

implemented,

a hardware layer in which a set of hardware accelerators are implemented and

a software layer configured for abstracting the application containers and the serverless functions

of the domain layer from the hardware layer.

Moreover, the system comprises:

a hardware interface to send tasks to and reconfigure at least a portion of the processing means

implemented in the hardware layer,

a software structure that shares hardware accelerators of the hardware layer between application

containers and serverless functions of the domain layer.

Advantageously, the software structure performs scheduling and optimization algorithms on the

resource allocations of the hardware accelerators of the hardware layer for the application

containers and functions of the domain layer in terms of device time or space slot of utilization,

Particularly, the scheduling and optimization algorithm comprises a monitoring structure interfacing

with processing means and with the software layer for reading performance metrics of at least one

processing means.

Preferably, the software structure comprises at least one device manager component connected

with the hardware interface and at least one remote library component to interface each application

container and function with the at least one device manager components concurrently.

Thanks to such a system it is possible to efficiently isolate accelerated kernels and provides a

transparent way to access them remotely through a framework for writing programs that execute

across heterogeneous platforms.

In an embodiment, the hardware interface is configured to communicate with at least a portion of

the processing means of the hardware layer, including Field-Programmable-Gate-Arrays (FPGAs),

Application-Specific-Integrated-Circuits (ASICs), Digital Signal Processors (DSPs) and Graphic

Processing Unit (GPUs).

In an embodiment, the at least one remote library is configured for receiving method calls performed

by an application and/or a function implemented in the domain layer and forward such method call

in an asynchronous manner to a service endpoint exposed by the at least one device manager.

In an embodiment, the at least one device manager receives a plurality of method calls that requires

hardware accelerators to be performed from the at least one remote library associated with a

corresponding application and/or function.

Moreover, the at least one device manager is configured to:

- create at least one task, the at least one task comprising a minimum sequence of called method

to be performed in a predetermined order, and

- forward the at least one task to the hardware interface.

In an embodiment, the at least one device manager is configured to sequentially adding method to

be performed in the at least one task until a blocking method or an explicit finish/flush/barrier

command is added.

In an embodiment, the at least one device manager is configured to inserting the at least one task

queue once created.

Advantageously, the device manager further comprises at least one worker thread configured to

pull and execute on the hardware accelerator tasks comprised in the task queue.

In an embodiment, the worker thread is configured to select which task pull from the task queue

based on at least one of the following metrics associated with the hardware accelerator:

- number of requests received/executed by the device,

- number of in-flight requests,

- allocated memory,

- number of allocated buffers,

- hardware accelerator utilization,

- number of connected applications and instances.

In an embodiment, the device manager component interfaces with the hardware interface to send

multiple tasks in parallel to different hardware accelerators and/or to reconfigure the processing

means.

In an embodiment, a respective remote library is implemented in each application container or

function implemented in the domain layer.

In an embodiment, the at least one device manager and the at least one remote library are

configured to communicate via a network connection. Alternatively or in addition, the at least one

device manager and the at least one remote library are configured to communicate via a shared

memory area of the hardware layer on which is deployed the software layer implementing both the

device manager and the at least one remote library.

In an embodiment of the invention, the at least one device manager and the at least one remote

library are configured to are configured to expose at least one of the following service:

application containers and functions registration and disconnection;

hardware accelerator information gathering;

reconfiguration requests;

buffers manipulation;

accelerator-related methods, and

command queue operations.

In an embodiment, the software structure may comprise a central management component

interfacing with the at least one device manager and the at least one remote library components to

perform scheduling and optimization algorithms on the resource allocations of the hardware

accelerators of the hardware layer.

In an embodiment, the central management component is configured to:

receive request of instantiation of functions and/or applications, and

for each function or application:

assign a domain layer resource for instantiating the function or application, and

assign at least one device manager to the function or application, the device manger

interfacing with the hardware interface associated with a hardware accelerator requested by the

function or application.

In an embodiment, the scheduling and optimization algorithms performed by the central

management component use system runtime performance indicators to efficiently allocate the

resources of the hardware layer to the application containers and functions, such runtime

performance indicators comprising at least one among:

- number of requests received;

- number of in-flight requests;

- allocated memory, and

- current workload,

related to the hardware layer, one or more hardware accelerators implemented in the hardware

layer or one or more processing means of the hardware layer.

In an embodiment, the at least one device manager and the central management component are

configured to communicate via a network connection to exchange network message/methods

called comprising at least one among:

hardware accelerator registration and removal from the central management component;

reconfiguration request and validation of the hardware accelerator;

metrics pushing from the device manager to the central management component, and

periodic polling from the device manager to the central management component and

viceversa.

In an embodiment, the at least remote Library and the central management component are

configured to communicate via a network connection to exchange network message/methods

called comprising at least one among:

application containers and functions registration and removal from the central management

component;

Instances of the application containers and functions registration and removal from the

central management component, and

hardware accelerator reconfiguration request and validation.

Further characteristics and advantages of the present invention will be more clear from the following

detailed description of some preferred embodiments thereof, with reference to the annexed

drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described here below with reference to some examples provided by way of

example and not as a limitation, and shown in the annexed drawings. These drawings show

different aspects and embodiments of the present invention and, where appropriate, reference

numerals showing like structures, components, materials and/or elements in different figures are

indicated by like reference numerals.

Figure 1 is a schematic overview of the system components (without connections between them);

Figure 2 is a block diagram of a single node diagram of the system with connections between

components: external API gateway and cloud orchestrator, Accelerators Registry, Functions

instance (integrated with the Remote Library) and Device Manager (connected to the FPGA board);

Figures 3 shows three block diagrams representing different configurations for a node: (a) Single

shared FPGA with multiple function instances; (b) Multiple FPGAs from the same vendor, used by

one or more instances, and (c) Multiple FPGAs from different vendors, used by one or more

instances (one instance may use FPGAs from multiple vendors at the same time);

Figure 4 is a schematic diagram of Device Manager Architecture, showing part of the Actions

performed, which are numbered as such: 1 - Request received by the network service; 2 - Context

and information related methods; 3 - Grouping of operations into tasks; 4 - Task execution on

FPGA, and 5 - Execution notification to the service implementation;

Figure 5 is a flowchart of operation grouping in tasks on Device Manager;

Figure 6 is a schematic diagram of OpenCL Remote Library Architecture, numbered steps are

described in Section F of the detailed description;

Figure 7 is a flow sequence diagram of Function Deployment;

Figure 8 is a logarithmic graph showing average latency measurements at increasing requests/sec

of Sobel on CPU, FPGA and with our shared library for different numbers of instances sharing the

same host and board - lower is better;

Figure 9a is a logarithmic graph showing average latency measurements for BFS executed on

CPU, FPGA with and without the proposed shared library for different numbers of instances sharing

the same host and board, and at increasing requests/sec sent to BFS; benchmark saturation

depends on network bandwidth - lower the better;

Figure 9b is a logarithmic graph showing average latency measurements for BFS executed on

CPU, FPGA with the proposed shared library for different numbers of instances sharing the same

host and board, and at increasing requests/sec sent to BFS, isolating kernel execution network

data movement - lower the better;

Figure 10a is a logarithmic graph showing average latency measurements for MM executed on

CPU, FPGA with and without the proposed shared library for different numbers of instances sharing

the same host and board, and at increasing requests/sec sent to the MM application; benchmark

saturation depends on network bandwidth - lower is better,

Figure 10b is a logarithmic graph showing average latency measurements for MM executed on

CPU, FPGA and with our shared library for different numbers of instances sharing the same host

and board with and without the proposed shared library for different numbers of instances sharing

the same host and board, and at increasing requests/sec sent to the MM application, isolating

kernel execution network data movement - lower is better;

Figure 11a is a linear graph showing the latency overhead w.r.t. input data size for R/W operations

for systems according the present invention and a system known in the art;

Figure 11b is a linear graph showing the latency overhead w.r.t. input data size for sobel operator

for systems according the present invention and a system known in the art, and

Figure 11c is a linear graph showing the latency overhead w.r.t. input data size for MM kernel for

systems according the present invention and a system known in the art.

DETAILED DESCRIPTION OF THE INVENTION

While the invention is susceptible of various modifications and alternative constructions, some

preferred embodiments are shown in the drawings and will be described in details herein below. It

should be understood, however, that there is no intention to limit the invention to the specific

disclosed embodiment but, on the contrary, the invention intends to cover all the modifications,

alternative constructions and equivalents that fall within the scope of the invention as defined in the

claims.

The use of “for example”, “etc.”, “of” denotes non-exclusive alternatives without limitation, unless

otherwise noted. The use of “includes” means “includes, but not limited to”, unless otherwise noted.

A. System Overview

An overview of the proposed serverless system - simply indicated as 'system 11 in the following for

the sake for brevity - can be seen in Figure 1, which highlights the main components of the system

1. A simple diagram of the system 1 (with a single node 10 , while the system 1 may be composed

of multiple nodes) with also the connections between the different components is shown in Figure

2 . The described system 1 diagrams are intended to be a generic structural view of the system, as

it might be extended according to future needs and additional components. Here we provide a brief

overview of each component, while a detailed description is given in the next subsections.

The API Gateway 20 and Cloud Orchestrator 30 components are per se known in the art and do

not form a part of the present invention and are generally needed to connect, orchestrate and, in

general, manage the system 1 according to the present invention as known in the art, apart for the

differences described below. These known components may be custom-developed or taken from

an existing external system/product with the needed features.

In detail, for API Gateway 20 we mean any component able to receive and forward requests (in a

given network protocol such as HTTP/S and others) to the deployed function instances. The API

Gateway 20 is the component of the system 1 exposed to an external network, and must operate

securely and without impacting on the performance of the requested services.

Moreover, for Cloud Orchestrator 30 we mean any component able to schedule and allocate

function instances and other components in the given serverless system 1 (which could be a bare-

metal cluster, a set of provisioned VMs both in a cloud environment and/or on-premise, a set of

containers in a cloud environment and/or on-premise or other) based on the user requests and

other factors. Thus, the Cloud Orchestrator 30 includes one or more existing orchestrators for cloud

systems (e.g. Kubernetes [18], Docker Swarm and others) and existing or custom serverless

systems (such as OpenFaas [19], Kubeless and others). The Cloud Orchestrator 30 may include

an autoscaling mechanism to deploy and deallocate function instances based on the number of

requests or other factors. Moreover, the Cloud Orchestrator 30 exposes an interface and integrates

with an Accelerator Registry 40 in order to allow a more precise allocation and scheduling of the

other components (i.e., Device Manager 50 and Function Instances 60) for function initialization,

autoscaling and deallocation.

For Function we mean the definition of a component - also indicated as 'serverless function 1 in the

following - used to respond to an incoming request - e.g. from a client entity connected to the

system - or exposing a serverless service. As such, a Function can be declared as a snippet of

code - e.g., implemented as Function Code 6 1 in the example of Figures 1 and 2 - used as a

handler to manage incoming requests to an endpoint of the serverless architecture integrated with

the proposed system 1 as described in the following, or a standalone application exposing a service

to an internal network of the system 1 (i.e., connecting the various components of the system)

and/or an external network (i.e., connecting the system 1 with external entities). The generic

function may or may not require the use of a single accelerator, multiple accelerators or none, using

a single FPGA 70 board or multiple boards. Particularly, the term 'accelerator' is herein used to

identify a piece or a portion of a hardware accelerator - e.g. the FPGA 70 board or a portion thereof

in the example at issue - configured to perform a specific computation, typically labor-intensive.

In order to serve the user requests in a scalable way, the system 1 can instantiate from one to

multiple Function Instances 60.

With Function Instance 60, we mean a specific instance of the Function implementation which

serves a same serverless service or endpoint of the system 1 in a load-balanced manner, in order

to increase the system 1 scalability. Thus, the Function Instance 60 may be represented by a

standalone application, a VM or an application container including the Function implementation.

The Function Instance 60 is the component that directly connects to the Device Managers 50 in

order to access the shared accelerator in the proposed system 1 - e.g. an FPGA 70 in the example

at issue. The connection between the Function Instance 60 and the Device Manager 50 or the

central registry - i.e., the Accelerator Registry 40 - is done through the Remote Library 63, which

abstracts the remote accelerator configuration and access. The Remote Library 63 should expose

different interfaces to access the accelerator - e.g., such as an interface exploiting OpenCL [20]

version 1.2 or higher or other languages suitable for the purpose.

In addition, the Remote Library 63 allows accessing multiple accelerators in a vendor-independent

way or using vendor-specific functionalities if supported by the system 1.

The Device Manager 50 is in charge of managing the FPGA device 70 and the related runtime, and

it is the only component that can directly communicate with the accelerator - i.e., the FPGA 70 -

and control it. The Device Manager 50 is also the component that allows sharing the FPGA 70 with

multiple functions and accelerators - i.e., a FPGAs 70, other hardware resources or portions

thereof configured to perform a specific task - , thanks to its underlying sharing runtime. The Device

Manager 50 may employ both time and space sharing, as explained in Section B. In both cases,

the Device Manager 50 will arrange operations requested by a Remote Library 63 in higher-level

tasks and use a device-level scheduler to decide which tasks to run on the board - i.e., the FPGA

70 - at a given time (or which different accelerator to configure). The Device Manager 50 also

integrates with the Accelerator Registry 40 to manage the different priority policies to employ.

Moreover, the Device Manager 50 integrates with the Accelerator Registry 40 to decide which

operation requested by the Functions implemented via a corresponding Remote Library 63 to

accept, register and remove at a given time, based on the system 1 performance and other factors

(such as autoscaling operations which involve function instances).

A respective Device Manager 50 is deployed on every node 10 (for node we mean a physical or

virtual machine with a FPGA 70 connected to it via a PCI express link or other means) for each

distinct FPGA 70 connected to such node 10 . The Device Manager 50 exposes a service to access

functionalities of the respective FPGA 70.

Finally, the Accelerator Registry 40 is the central component of the system 1. Its role is to manage

Functions, Function Instances 60 and devices - i.e., FPGAs 70 and/or CPUs comprised in the

nodes 10 of the system 1, along with allocating devices to Functions implemented and, in general,

managing the system 1 state.

The Accelerator Registry 40 component integrates with the Cloud Orchestrator 30 in order to

transparently allocate resources —e.g., computing power, CPUs, FPGAs and GPUs - and schedule

the deployment, scaling and deallocation of Function Instances 60. In fact, the Accelerator Registry

40 employs a component that continuously checks the runtime metrics of the system and

dynamically allocates and deallocates devices 70 and Function Instances 60 based on those

metrics. All the high-level components of the system 1 (the Remote Library 63 in Function Instances

60, the Device Manager 50 and the Orchestrator 30) communicate with the Accelerator Registry

40 in order to expose their functionalities.

In summary, the Accelerator Registry 40, the Device Manager 50 and the Remote Library 63

provide a software structure implemented at a software layer of the system 1 that allows efficiently

and transparently allocating hardware resources - both accelerator and CPUs computing power -

of a hardware layer of the system 1 to any Functions - applications instantiated in respective

containers, serverless functions, etc. - implemented at a domain layer of the system 1.

B. FPGA Sharing method

The system 1 supports FPGA sharing in multiple ways. Here for sharing we mean that an FPGA

70 may be used by multiple Functions implemented in the system 1 - e.g., applications deployed

in corresponding Function Instances 60- in different times or at the same time, with a single or

multiple accelerators configured on the same FPGA 70.

A first sharing method is called time sharing, meaning that the FPGA 70 is programmed with a

single accelerator and the configuration - i.e. is used by one Function Instance 60 at a time. An

accelerator is composed of a single kernel or a set of kernels, which are used by the same Function

Instance 60 for a common goal (e.g. machine learning inference, data compression, and other

accelerated computations).

Time sharing itself can be implemented in the system in multiple ways. A first option is to program

the FPGA 70 board with a single accelerator, and interleave the execution of operations and tasks

by different client applications/serverless functions - implemented in Function Instances 60 - in

time by switching between them with a given policy. The policy can be round-robin, priority-based,

profiling-based or any other policy suitable for the system. In addition, the policies may be user-

defined, meaning that the system should accept external policies defined in a formal way (e.g. by

means of math or logic formulas, algorithms or external services/functions). A second option

consists in using a different accelerator for each external implemented Function that needs it, and

interleaving the execution of tasks on the different bitstreams by reconfiguring the FPGA 70 board

continuously. This option, like the first one, involves the use of a policy for the interleaving

mechanism.

Another approach to the sharing problem that may be included in the system 1, in addition or as

an alternative to the time sharing, is called space sharing. Space sharing consists in splitting the

reconfigurable fabric of the FPGA 70 among multiple accelerators (and kernels inside the

accelerators), thus allowing the concurrent and parallel usage of them by the users.

The split can be done by employing Partial Dynamic Reconfiguration (PDR) or by merging the

accelerators in a single bitstream (called Overlay) or any other technique suitable for the system 1.

In this way, the system 1 may expose multiple accelerator for the same board 70, in addition to the

time sharing mechanism used for each accelerator.

Alternatively, the creation of a multi-accelerator bitstream (or a partial reconfigurable area) can be

done based on size and performance information for each kernel, without the use of PDR. This

mechanism may require the system 1 to be in possession of the source code (or the design files)

of the different accelerators, in order to estimate performances and sizes and to perform the actual

sharing (e.g. by merging the designs or tuning them in order to fit into the reconfigurable areas of

the FPGA 70).

C Communicationprotocol

All the components of the system 1 must be able to communicate through a network connection

(stylized by arrows in Figure 2) either virtual or physical depending on the components and their

deployment. The network protocol used may be different for each distinct connection between

components, but the type of messages/methods sent between components is fixed and described

below.

In particular, the specification of a network service between the Device Manager 50 and the Remote

Library 63 used by the generic Function instantiated and associated with the considered Remote

Library 63 - includes:

• Function Instance 60 registration and disconnection;

• Platform/Device information gathering;

• Reconfiguration requests (with bitstream hash, accelerator name or other means, including

sending the entire binary);

• Buffers manipulation (create/write/read/release);

• Accelerator-related methods (create, run, set arguments, release), and

• Command queue operations (e.g. flush of current operations).

The network message/methods called between the Device Manager 50 and the Accelerator

Registry 40 includes:

• Device registration and removal from the Accelerator Registry 40;

• Reconfiguration request and validation;

• Periodic metrics pushing from the Device Manager 50 to the Accelerator Registry 40;

• Periodic polling from the Device Manager 50 to the Accelerator Registry 40 and viceversa, and

• Other commands to be executed by the Device Manager 50.

The network message/methods called between the Remote Library 63 (including the deployed

function as a whole or its distinct instances) and Accelerator Registry 40 includes:

• Function registration and removal from Accelerator Registry 40;

• Function instance 60 (e.g. executable/container/VM) registration and removal from Accelerator

Registry 40

• Reconfiguration request and validation (pre-Device Manager)

• Other polling messages and commands to be executed by the Function Instance 60 or by the

Accelerator Registry 40.

These lists represent the minimum set of interfaces and services to be exposed in the system 1,

but each interface/service may be extended based on future requirements and extensions of the

system 1, and new interfaces and services may be added. In addition, the communication may

happen using any compatible network protocol and framework (e.g. TCP/UDP, UNIX sockets,

message passing or RPC/gRPC protocols).

In an alternative embodiment, the Device Manager 50 and the Remote Library 63 deployed on a

same node 10 can communicate - i.e., expose services one another - by exploiting at least a

shared memory area of a memory component (either physical or virtual) of the node 10. This

improves performance and reduces additional data copies (from four to one w.r.t. network protocols

such as gRPC) at the cost of having the Function instance 60 together with the Device Manager

50 on the same node 10 with permissions to create and/or access in read/write the shared memory

area. When the system 1 is implemented according to OpenCL, one data copy is required to

maintain full OpenCL compatibility, as a direct access to the shared memory area would require to

define additional functions not available in the OpenCL specification.

For example, the Device Manager 50 may be configured to employ gRPC if the Function is not

instantiated on the same node 10 - or if it is not possible to create a shared memory area - and,

conversely, employ a shared memory area whether the Function is instantiated on the same node

10. Although gRPC is a powerful protocol for data exchange over network, we found performance

issues utilizing it locally due to serialization overhead and due to multiple data copies. For this

reason, shared memory is preferable.

D. Node

A node 10 of the system 1 is represented - i.e., is implemented - by a computing device, which

should include a uniprocessor or multiprocessor system (e.g., single/multicore, with any ISA such

as x86, PowerPC, SPARC, MIPS or any other suitable system). The node 10 includes components

such as memory, network interfaces, storage devices and computational devices (such as GPUs,

FPGAs and processors), along with other devices needed by the system. Figure 3 shows how the

system components may be located on a given node 10. In particular, the system 1 may include a

single FPGA 70 (Figure 3 a)) or multiple FPGAs 70 (Figure 3 b) and c)), from the same vendor or

from different vendors. According to an embodiment, the Device Manager 50 is preferably

associated with a corresponding FPGA 70 - even though nothing prevents from associating a

Device Manager 50 with multiple FPGAs 70 in different embodiments of the invention (not shown

in the drawings). Finally, one or multiple Function Instances 60 may be instantiated onto the same

node 10, each connecting to one or multiple Device Managers 50, and each Device Manager 50

receives connections and requests from one or multiple Function Instances 60, in this way allowing

the sharing of the underlying FPGA 70 to which the device manager 50 is connected.

The runtime 80 component shown in Figure 3 is a software component that allows accessing the

FPGA 70 functionalities from the host system - i.e., the client of the serverless service. The runtime

80 component may be a standard interface shared by multiple vendor drivers - as shown in Figure

3 b) - or may be diversified for each different FPGA 70 and FPGA vendor - as shown in Figure 3

c). The Vendor Driver 90 is a kernel-level software component that directly manages the physical

signals between the FPGA 70 and the system processor and memory of the node 10 , exposing an

API to be used by the runtime 80 component.

£ Device Manager

The Device Manager 50 is the component that makes direct use of the FPGA 70 board. In fact, for

each board present in the cluster, the system 1 runs an instance of the Device Manager 50 to

control and use such FPGA 70. The Device Manager 50 exposes the network services described

previously in Section C. The service implementation is integrated with the Device Manager 50 logic

and it uses directly the underlying components - i.e., the runtime 80 and the Vendor driver 90 - to

control the FPGA 70. The FPGA 70 may be accessed through different means, for example the

vendor specific OpenCL library, a board device driver or any other compatible component.

Figure 4 shows the key features and components inside the Device Manager 50, along with the

flow followed by operations that are to be executed on the FPGA 70. The first component of the

Device Manager 50 is a service endpoint 5 1 , which receives all the method calls by the Function

Instance 60 - i.e., which are provided by the Remote Library 63 as described in the following

section. Method calls are forwarded to a Service Implementation 53 (circled number 1 in Figure 4),

which is a multithreaded component with a set of worker threads, of which only a single worker

thread 55 is shown in Figure 4 , managed by the network protocol implementation that operates as

described in the following.

In the considered embodiment, there are two kinds of methods exposed by the Service

Implementation 53: context and information methods and command-related methods, as should be

clear to the skilled person further methods type can be added depending on the computing

language and runtime support of the proposed system 1. In the present disclosure, the term

'method' generally refers to an operation that has to be performed by a component of the hardware

layer of the system 1, e.g. a processing element such as a CPU of the node 10 in which the Device

Manager 50 is implemented and/or a FPGA 70 configured to provide one or more accelerators to

which the Device Manager 50 is connected. For example, methods can be defined according to

OpenCL specification or any other suitable computing language.

The context and information methods are executed synchronously as they do not require the

execution of one or more tasks by the FPGA 70 (circled number 2 in Figure 4). More generally, all

the methods which do not involve the FPGA 70 directly (e.g. platform, device, program and

arguments information gathering, release of objects) may be executed synchronously and without

concurrency issues. There may be exceptions, such as the programBoard operation in OpenCL,

which is used to modify the configuration of the FPGA 70. In fact, reprogramming the FPGA 70

board with a given bitstream could block the execution of other operations in order to be performed,

and it may require to synchronize with other methods, thus creating concurrency issues.

The command-related methods, instead, should be executed in a predetermined order (from the

single Function point of view - in other words, the order has to be maintained to have the called

methods executed as intended and have the Function instance 60 receiving a correct output) and

require the use of the FPGA 70 exclusively. An example is the kernel execution request, which

might be interleaved with buffer reads and writes on one or multiple queues. For this kind of

requests, if any operation is received or executed in the wrong order by the Device Manager 50,

the results of the execution will change, thus breaking the Instantiated Function consistency.

The Device Manager 50 employs procedures to avoid conflicts between kernels and/or

accelerators, by either employing a single Task Queue 57 - as shown in Figure 4 - , or by using

other methods to ensure the commands order, consistency and synchronization. On the Function

instance 60 side, the system 1 virtualizes the creation and use of command queues - in case of

OpenCL - (or other components depending on the computing language used) based on the client

identifier, or Function identifier, obtained when registering to the system 1.

Advantageously, inside the Device Manager 50, i.e. by the Service Implementation 53 component,

multiple operations - i.e. methods - from a same starting point (e.g. a Function Instance 60, a

command queue implemented in a serverless function or application, etc.) may be grouped

together in atomic tasks (circled number 3 in Figure 4). An atomic task consists of one operation or

multiple in-order operations, such as buffer read/write or kernel execution. In the case of multiple

in-order operations, the atomic task comprises the minimum set of operations that have to be

performed in-order to obtain a useful output from the FPGA 70.

A process 500 of creation of the generic atomic task, according to an embodiment of the present

invention, is schematically shown in the flowchart of Figure 5 .

Each operation sent by the Function Instance 60 and received at the service endpoint 5 1 is added

to an object 531 of the Service Implementation 53 in the Device Manager 50 containing the

operations that are being combined in a corresponding atomic task and atomic tasks that have yet

to be flushed and executed by the system 1 - i.e., not yet forwarded towards the FPGA 70 - (block

501).

Particularly, operations - i.e. methods - from a same Function Instance 60 are inserted in an atomic

task associated with such client (block 503).

Operations received are checked in order to detect a flush command - either by calling a blocking

method or an explicit finish/flush/barrier command - (decision block 505), and as long as no flush

command is detected (exit branch N from decision block 505) the process 500 is reiterated starting

from the step described above with respect to block 501 .

Otherwise, when the a Function Instance 60, sends such a flush command (exit branch Y from

decision block 505), the current task is sent to a Task Queue 57 of the Device Manager 50 (block

507) in order to be forwarded to the FPGA 70. Afterwards, a new (empty) task is generated to

receive further methods calls, by reiterating the process 500 starting from the step described above

with respect to block 501 . This mechanism - i.e., the creation of atomic tasks - avoids conflicts

between different clients and lowers the resource usage on the board 70 (e.g., memory buffers can

be deallocated while not used or when the data has to be overwritten by the next task).

In one embodiment, the process could be extended in order to not require explicit flushing from the

client-side, by adding a speculation mechanism in order to flush tasks based on their structure or

past history of the methods called - and their sequence - by the implemented Functions.

Once the atomic task arrives to the Task Queue 57 of the Device Manager 50, one or multiple

worker threads 55 pull and execute the atomic task on the FPGA 70 (circled number 4 in Figure 4).

The policy used to decide which atomic task to execute may be included in the Device Manager

50, or decided by the system 1 through the Accelerators Registry 40. In addition, the policy may be

based on the system 1 performances and other relevant metrics related to each registered

Function, the corresponding one or more Function Instances 60 or the FPGA 70 device in use.

Each operation of the executed atomic task is linked with an asynchronous event and when the

method is done the corresponding event is notified to the method caller - i.e., the corresponding

Function Instance 60 that requested the operation - (circled number 5 in Figure 4). In this way, the

client is notified punctually, even if the methods are executed in groups, i.e. the atomic tasks

generated by the Device Manager 50. It should be obvious to the skilled person that, in addition to

the software scheduling employed by the Device Manager 50, an additional component may be

synthesized in hardware to perform tasks and operations scheduling on the FPGA 70 board.

A further feature of the Device Manager 50 is the ability to expose device-related metrics - e.g.,

metrics related to the FPGA 70 - to the system 1 - particularly, to the Accelerator Registry 40 and/

the Remote Library 63 - , which may be used by the system 1 to enhance the scheduling and

allocation performances, or to monitor the state of each device and component of the system 1.

A metric is defined as a measurement regarding a particular component of the system 1, which is

of interest to the system itself or other systems. Possible metrics exposed by the Device Manager

50 include the number of requests received/executed by the device, number of in-flight (not yet

executed, but flushed) requests, allocated memory, number of allocated buffers, device utilization

(in terms of space and time slice/percentage), number of connected Function Instance 60 and all

other possible runtime and offline information about the device, the configured accelerators or other

connected components.

Also, the metrics may be related to the actual physical device, the node 10 on which the Device

Manager 50 is, or for each distinct accelerator configured on the device, i.e. the FPGA 70 in the

example at issue. Each metric may be represented by a single number, a sum, a percentage, a

vector or any other needed data type. The metrics may be exposed by the Device Manager 50 with

different mechanisms, such as Push (the Device Manager 50 sends the metrics to a specified

endpoint), Pull (the Device Manager 50 exposes a service that external components might contact

to grab metrics) or event-based. Finally, the Device Manager 50 may store the metrics in memory

or on storage devices, either locally or remotely, for a needed period of time.

F. Remote Library

In order to integrate client applications and serverless functions with the system 1, and to isolate

them from the actual execution thereof in the implemented hardware acceleration, the Remote

Library 63 component is deployed in the system 1 according to the embodiments of the present

invention.

In particular, the Remote Library 63 implements most of the methods used to control an accelerator

implemented on the FPGA 70, without presenting the Function implemented in the Function

Instance 60 lower level details - for example the FPGA 70 board position and the sharing

mechanisms included into the system 1 - along with other details not directly connected to the

accelerator usage. A particular feature of the Remote Library 63 is that it can be easily integrated

with any external user component (which can be a client application, a serverless function or other)

by overwriting the already installed library, or by adding Remote Library 63 to the file-system and

setting the LD_UBRARY_PATH variable accordingly. If the user code - e.g. the Function code 6 1

in the Function instance 60 - is linked dynamically, this allows integrating the user code with the

system 1 without changing any line of code.

In an embodiment, the Remote Library 63 interface mimics the OpenCL specification, as it

represents the most general interface to communicate with heterogeneous accelerators (including

FPGAs) and is supported by the main vendors on the market. The Remote Library 63, may also

implement other methods in addition to the OpenCL specification, in order to meet additional

requirements of the system (e.g. the possibility to use a central bitstreams/accelerators repository

instead of using bitstream or kernel files directly), or to use vendor specific functionalities.

We will now provide a description of the main mechanisms and components included in the Remote

Library 63.

The Remote Library 63 implements a central router component - not shown in the Figures - , which

acts as a singleton, and it is responsible for keeping a list of the available platforms and devices.

When created, the router component connects to the Accelerator Registry 30 to obtain the

allocation of the devices - i.e., the node 10 or the FPGA 70 - to the client, along with a list of

addresses of the Device Managers 50 to which it must connect. If the Accelerator Registry 30 is

not available (e.g. in local or testing scenarios) the router can connect directly to a given Device

Manager 50 address. For state-changing operations (i.e., any method call that does not simply

entails information - e.g., metrics - as output) the Remote Library 63 calls the registration method

exposed by the Device Manager 50 to ensure that the connection is established and that the Device

Manager 50 has reserved the needed resources for the Function Instance 60.

Moreover, in case the connection to the Accelerator Registry 30 or any one of the Device Managers

50 is lost, the Remote Library 63 should either crash the Function code 6 1 , or try to restore the

connection and the previous state of the virtualized device or devices.

After having checked the registration, the proper method is called based on the upper-level call by

the Function Code 6 1 . The system 1 allows for both synchronous/blocking calls to the Device

Manager 50 and asynchronous/non-blocking calls. Both the synchronous and asynchronous flows

rely on asynchronous events.

An event in the system 1 is composed by a set of subsequent asynchronous calls to the network

services provided by the Device Manager 50 - or alternatively, by accessing the shared memory, a

state machine of the Remote Library 63 - not shown in the drawings - is configured to control the

steps that each event must follow and a status which is updated while the event is processed. In

this way, the Remote Library 63 supports event polling, which may be required by some interfaces

(e.g. clWaitForEvents, clGetEventlnfo in the standard OpenCL specification).

The asynchronous flow steps are shown in Figure 6 , which shows the main components of the

Remote Library 63. For each distinct connection created with the Function Code 6 1 by means of a

Library interface 633, the Remote Library 63 starts a thread, which uses a Completion Queue 635

filled with responses from the network service - i.e., provided by a corresponding Device Manager

50 of the node 10.

To perform a method call received from the Function code 6 1 at the Library Interface 631 (circled

number 1 in Figure 6), the Remote Library 63 creates an event the Asynchronous Event Object

637 (circled number 2 in Figure 6).

A first asynchronous call is also created by the Remote Library 63 - at the Asynchronous Event

Object 637 - and forwarded to the network service on the corresponding Device Manager 50 - by

means of a service endpoint 639 (circled number 3 in Figure 6).

The first asynchronous call encapsulates a tag to identify the newly created event associated

thereto. Whenever the Device Manager 50 responds - as described in section E - , the network

runtime pushes the sent event identifier into the Completion Queue 635 of the Remote Library 63,

where the event identifier is associated with the associated method call previously forwarded to the

Device Manager 50 (circled number 4 in Figure 6).

Then, an Events Thread 639 pulls the event identifier - i.e., the tag - and retrieves the

corresponding event (circled number 5 in Figure 6). The Event Thread calls the event state

machine, which performs the needed operations and updates its state and the event status (circled

number 6 in Figure 6). Finally, the application is notified when the event changes the status (circled

number 7 in Figure 6).

For example, to perform a read buffer function, the event state machine contains four states (INIT,

FIRST, BUFFER, COMPLETE). The INIT state sends the call metadata (buffer size, buffer id,

offset); the FIRST step waits for the command to be enqueued by the Device Manager 50; the

BUFFER step actually sends the buffer data when the Device Manager 50 is available, and the

COMPLETE step signals the call completion. The states in the event state machine depend on the

different kind of event created, and may be different from the ones described in the previous

example.

G. Accelerator Registry

The Accelerator Registry 40 is the main component of the system 1. Its role is to manage and

allocate both devices - e.g. one or more nodes 10 and/or FPGAs 70 in the example at issue - and

user applications/serverless functions implemented in the system 1. The Accelerator Registry 40

is implemented as a standalone service, either in form of a native application running over the

underlying operating system, or as a containerized or virtualized component. All the other

components of the system 1 may require connecting to the Accelerator Registry 40 in order to be

work as intended.

We will now list and describe the functionalities of the Accelerator Registry 40:

• Contains information regarding all devices - i.e., one or more nodes 10 and FPGAs 70 in the

example at issue client applications/functions - requesting services - and Function Instances 60

- deployed in the one or more nodes 10 of the system 1;

• Maps every Function instance 60 with the requested devices;

• Performs scheduling and allocation of devices - i.e. CPUs and FPGAs 70 in the example at issue

- to Functions to be instantiated and/or Function Instances 60;

• Validates and allows the reconfiguration of devices based on different conditions;

• Gathers and aggregates metrics from the system devices and Functions Instances 60;

• Allows the runtime registration and removal of devices and Function Instances 60, and

• Integrates with the API of the Cloud Orchestrator 30 and the system 1 in general.

First, the Accelerator Registry 40 is responsible for the devices and Functions and Functions

Instances 60 registration and removal at runtime. In fact, it contains multiple lists for all the other

components of the system 1 and their information.

Example of information needed for the Device Managers 50 are the device path, type, vendor,

current bitstream hash or complete binary, device manager address, node etc. With respect to the

Functions and Function Instances 60 in the system 1, the Accelerator Registry 40 may store details

about the node, address, required device, required kernel etc.

Furthermore, the Accelerator Registry 40 exposes on the network multiple endpoints (not detailed

in the Figures) which allow the other components to register, update and remove their status

throughout their lifetime in the system 1. Each system 1 component establishes a connection

(directly or indirectly if possible) to the Accelerator Registry 40 at startup, in order to send an initial

status. In fact, each component sends periodic updates to the Accelerator Registry 40 if needed,

and removes its information when terminated (for example, when a Function Instance 60 is

terminated by the user or to handle errors at runtime, or when it is moved on a different node 10

and must be reinitialized). The components information and registration are needed in order to

perform online scheduling and allocation of the devices to fill subsequent requests, and to

disconnect or move user functions and instances when needed (for example when the given device

is reconfigured).

The Accelerator Registry 40 performs online scheduling and allocation of devices in the system at

runtime. Each Device Manager 50 registers itself with the Accelerator Registry 40 at the beginning

of its execution, sending information about the managed device - e.g. one or more of the FPGAs

70 in the example at issue - (e.g. device identifier, vendor, hardware version). When a Function is

created in the system 1 - i.e., a client forwards to the system 1 a function to be executed-, such

Function is created along with a request for the Accelerator Registry 40. The Accelerator Registry

40 receives the Function instantiation request, checks it against multiple conditions, and selects

the one or more nodes 10 on which the corresponding one or more Function Instances 60 may be

allocated and scheduled. The conditions are related to the particular device or kernel/accelerator

needed by the function, and may include its vendor, id, type, configured accelerator and in general

any information of the device which may be stored in the Accelerator Registry 40, with a partial or

complete match. Then, for each Function Instance 60 created, the Accelerator Registry 40 decides

to which particular Device Manager 50 to connect the Function Instance 60 (i.e., performs the actual

allocation/scheduling action).

The allocation is performed according to the runtime metrics gathered by the Accelerator Registry

40. Possible metrics include: number of requests received by the device, number of in-flight

requests, allocated memory, current device utilization (in terms of space and time percentages)

and all other possible runtime and offline information about the device, the configured accelerators

or other connected components. Metrics may be related to the actual physical device, the node 10

on which the device and the Device Manager 50 are, or the distinct accelerator configured on the

device.

Preferably, previous profiling results for the accelerator or the Function may be used in the

allocation phase, along with node performance metrics (e.g., CPU performance, network bandwidth

and latency). By collecting and using offline and runtime performance metrics, the Accelerator

Registry 40 is able to perform device allocation to each single Function Instance 60 deployed in

the system in order to maximize the connection performance between the Function Instance 60

and the Device Manager 50, to provide a fair share of the device/accelerator (in terms of time and

space slices) and to avoid affecting the other components connected to the given device. Thus,

even if overprovisioning of the device (meaning allocating it to more Functions than possible) may

be allowed, the Accelerator Registry 40 constantly monitors the runtime metrics and acts

accordingly. Possible actions may include terminating and rescheduling Function Instances 60,

updating the Device Manager 50 policy regarding tasks execution, and other actions aimed at

preventing performance issues over a single or multiple devices.

In an embodiment of the invention, the Accelerator Registry 40 offers two endpoints, each backed

by a different service.

A first service is a Devices Service that collects and manages information about the devices (e.g.

platform, configured bitstream and connected instances).

A second service is a Functions Service that contains data about the serverless functions (e.g.

identifier, location, device, created instances).

Data collected through the Device and Functions Services are integrated by a Metrics Gatherer,

which is an internal component of the Accelerator Registry 40. The Metrics Gatherer receives

performance metrics of the Device Managers 50 from a suitable service - e.g. a Prometheus

service [21]. Data as time utilization the FPGA 70 (defined as the time spent by the device

computing method calls - e.g. OpenCL calls - in a given amount of time) are used to improve

efficacy in allocating functions to the most appropriate node 10.

To match Function Instances 60 and available devices - e.g. FPGA 70 - , the Accelerator Registry

40 performs an online allocation algorithm when a new instance is created. For example, the

Accelerator Registry 40 integrates with the Cloud Orchestrator 30 (preferably, Kubernetes [18]) to

intercept function creation and deletion in the system 1. When the system 1 notifies the creation of

a new Function Instance 60, the allocation algorithm patches the notified operation (e.g. adds

environment variables, volumes for shared memory and forces the host allocation). An example of

allocation algorithm, indicated as Algorithm 1, is presented in pseudo-code hereinbelow.

Algorithm 1 takes as input the Function Instance 60 that must be matched to a device - e.g. a

FPGA 70 - through a Device Manager 50, all the available devices in the system 1 and a list of

metrics to be taken into account. First, the procedure filters the devices based on their compatibility

with the application requests (in terms of vendor, platform and accelerator) and the performance

metrics (e.g. filtering out highly utilized devices).

The devices are then sorted by metrics and by accelerator compatibility to ensure an optimal and

consistent allocation.

The metrics priority can be chosen depending on the system 1 and applications SLA (e.g. device

utilization, connected functions, latencies). The accelerator compatibility instead checks if the

device should be reconfigured by looking at the currently configured bitstream. When compatible

accelerators are missing, the algorithm checks which workloads can be redistributed to other

compatible devices. If at least one device is found, it is flagged for reconfiguration and the

Accelerator Registry 40 allocates it to the requesting function instance.

Finally, when a reconfiguration is required, the system 1 checks the redistribution of instances and

then migrates them with API of the Cloud Orchestrator 30 if necessary. In particular, when a

Function Instance 60 sends a reconfiguration request, the Accelerator Registry 40 verifies the

allocation of the requesting Function Instance 60 and checks if the device needs to be reconfigured.

In that case, it deletes any other Function Instances 60 connected to that device. Advantageously,

the Cloud Orchestrator 30 creates new requests for instantiating the Function Instances 60 to be

deleted before effectively deleting such Function Instances 60: in this way, the Accelerator Registry

40 can patch and schedule the deleted Function Instances 60 on a different node 10.

H. Function deployment flow

Figure 7 shows the possible flow of requests and responses between the different components of

the system 1 when a Function Instance 60 is created. A Device Manager 50 may register (action

701) its presence to the Accelerator Registry 40 with an explicit request whenever necessary (e.g.

at start-up time, when it is restarted or needs to reconnect to the system). As for Function

instantiation, the process starts from a user request (action 703) to the system 1 (it may be made

through an external severless orchestrator or a component of the system 1, i.e. the Cloud

Orchestrator 30). The Cloud Orchestrator 30 will then create (action 705) the deployment related

to the requested Function - i.e., by registering the client with the Accelerator Registry 40 as shown

in Figure 7 . In the meantime, the Cloud Orchestrator 30 sends a registration request (action 707)

to the Accelerator Registry 40 for the one or more Function Instances 60 necessary to perform the

function requested by the client. In detail, for each Function Instance 60 to be created (which may

be an application container, Virtual Machine or standard application), the Cloud Orchestrator 30

sends a request to the Accelerator Registry 40 in order to obtain (action 709) from the latter the

physical node 10 on which to deploy (action 711) the Function Instance 60. If no location is decided

by the Accelerator Registry 40, the Cloud Orchestrator 30 may stop or delay the deployment of the

Function, or deploy the Function Instance 60 on a node decided through another mechanism (such

as according to an internal scheduler of the Cloud Orchestrator 20).

When the Function Instance 60 is deployed, the Remote Library 63 registers (action 713) the

Function Instance 60 to the Application Registry 40, which will then respond (action 715) with a list

of Device Managers 50 to which connect. Finally, for each address of a Device Manager 50

received, the Remote Library 63 will initialize a connection (action 717) to the corresponding Device

Manager 50, then the Remote Library 63 will pass the control to the Function Code 6 1 contained

in the Function Instance 60, which will begin its own execution flow forwarding operation requests

- i.e., method calls - to the one or more connected Device Managers 50 to be processed as

described above.

Design and implementation variations

The invention thus conceived is susceptible to numerous modifications and variations, all of which

are within the scope of the inventive concept that characterizes it. Here we will list some variations

and possible changes in the previously described system 1.

Regarding the overall system design, each component may be implemented using any

programming language and technology, and deployed using different tools. For example, each

component may be deployed on Virtual Machines, Containers or any existing host Operating

System. The node 10 previously described should be a physical or virtual machine, on-premise or

in a cloud environment (e.g. managed by an external entity such as a cloud/datacenter provider).

The network connection between the components of the system may be performed using any

physical mean of connection (wired or wireless) and any network protocol.

The system may not include some of the components described in previous sections: in particular,

the system should work even without the presence of an Accelerator Registry 40, the API Gateway

20 and/or the Cloud Orchestrator 30 in case the system 1 comprises a single node 10 . Alternatively,

there may be more than one instance of the same component (e.g. Accelerator Registry 40, or the

API Gateway 20) in the system 1, each configured for performing the same or different procedures

and functionalities and deployed according to different arrangements (e.g. master-slave, master-

master, load-balanced replicated instances) based on the specific constraints and/or resources

availability.

Regarding the sharing methodology, the system may allow to share, connect and use different kind

of hardware accelerators - e.g. FPGAs, Graphic Processing Units (GPUs), Digital Signal

Processors (DSPs) or Application Specific Integrated Circuits (ASICs). The sharing may be

performed in time (interleaving the execution and use of functionalities of the accelerator among

different applications or functions) or in space (meaning that different functionalities and

algorithms/circuits may be exposed by the shared accelerator at the same time).

Regarding the Device Manager 50 component, there may be variations related to the number and

disposition of the subcomponents included, or additional sub-components. For example, there may

be more queues fetched by the working thread based on a pre-defined or custom policy decided

by the Device Manager 50, or based on local runtime information (e.g. current functions connected

to the Device Manager 50).

The operations grouping mechanisms may not require explicit flushing from the client, but be based

also on other components and policies to choose which operations to run and in which order.

Finally, the Device Manager 50 internal components may be implemented with any required

technology and language.

Regarding the Remote Library 63, there may be variations related to the number and disposition of

the sub-components included, or additional sub-components. The asynchronous flow components

for the commands may change based on the underlying network protocol implementation or future

requirements and extensions. In addition, the asynchronous events and state machines may

change to include additional functionalities, such as procedures, tasks, methods etc. The

component integration is not restricted to the method described in Section F above, but may be

performed in any compatible way.

Additional components may be included in the Remote Library 63 based on future needs, and its

interface may be extended to accommodate future requirements. The flow (sequence of steps and

number and composition of the asynchronous event states) shown in Figure 6 and described in

Section F is intended as an example implementation, and may be extended or implemented

differently based on the specific application needs.

Regarding the Accelerator Registry 40, multiple instances may be deployed in different

configurations to improve its scalability. There may also be variations related to the number and

disposition of the sub-components included, or additional sub-components. The implementation of

the component may be performed using any required technologies and is subject to change based

on the overall system behavior and requirements. The different data structures included in the

Accelerator Registry 40, and the related functionalities, may be extended or reduced based on

future requirements. Finally, the scheduling performed by the Accelerator Registry 40 component

may be executed with any compatible algorithm, based on current and future requirements of the

overall system. This condition extends also to the processed information and metrics obtained by

the Accelerator Registry 40 while offering its functionalities.

Finally, the communication protocol (here defined as the set of messages and procedures that may

be used to perform communication between different components of the system) and the processes

described (such as the deployment flow described in Section H) may change based on current and

future functionalities and requirements to be included in the system 1.

In conclusion, the preferred embodiment of the invention provides FPGA-as-a-Service system able

to automatically scale and allocate accelerators to the requesting functions. In addition, the system

allows to isolate and decouple the execution of accelerated kernels on a FPGA by means e.g.

OpenCL, from the host codes that use them. This isolation layer is managed in a transparent way

by creating a remote acceleration library, i.e. the Remote Library 63 (based on the OpenCL

specification, or another compatible interface). Each FPGA is shared among different Function

Instances 60 through the Device Manager 50 service, allowing the cloud provider to expose the

given board - i.e., FPGA - and related accelerators as a service. Experimental results concerning

the Remote Library 63 and Device Manager 50 show limited overhead in terms of latency w.r.t. a

native execution, showing that the isolation mechanism exposes a reasonable cost in terms of

execution overhead. Finally, the proposed system 1 can be integrated with existing orchestrators

in order to provide an efficient scheduling and allocation of the shared devices among multiple

services, enabling the use of FPGA accelerators in serverless scenarios.

EXPERIMENTAL EVALUATION

In the following sections, we will describe the experimental campaigns we conducted to validate a

specific initial implementation of a shared FPGA system for serverless computing according to an

embodiment of the present invention.

The goal of the experimental campaign is to verify whether the FPGA sharing system according to

an embodiment of the invention is introducing a limited and possibly negligible overhead w.r.t. a

native execution.

Of course, if we consider a serverless scenario, the native execution represents the theoretical

maximum performance that the FPGA sharing system can achieve.

J. First Experimental Setup

To test the FPGA sharing system, we set up a small Kubernetes cluster composed of two nodes.

Both nodes are equipped with a single socket 3.40Ghz Intel® Core™ 7-6700 CPU, with 8 total

threads (4 cores) and 32GB of DDR4 RAM. The nodes are connected on a local network with 1Gb/s

Ethernet links.

Moreover, we installed a Terasic DE5a-Net FPGA board on the master node. The board includes

an Intel Arria 10 GX FPGA (1 150K logic elements) along with 8 GB of RAM over 2 DDR3 SODIMM

sockets and a PCI Express x8 connector.

We packaged the Device Manager 50 in a Docker container to provision it easily on the cluster.

The Device Manager 50 is then deployed using a Kubernetes DaemonSet with a custom label,

based on the FPGA 70 available on each node.

We evaluated the FPGA sharing system 1 against three public available benchmarks written in

OpenCL extracted from the Spector [22] benchmark suite. In particular, we chose to synthesize,

integrate and test the Matrix Multiply (MM) kernel, the Sobel filter and the graph Breadth-First

Search (BFS) kernel for both CPU (leveraging the Portable OpenCL runtime [23]) and FPGA. For

what concerns the Sobel and MM, these kernels are implemented in OpenCL by employing the

tiling technique, which means to perform the kernel in parallel over multiple sub-blocks of the

image/matrix. BFS is instead performed by iterating multiple times over the graph matrix using a

mask.

For each kernel, we developed a micro-service that exposes a REST API to load data, apply the

kernel and send back the output results after kernel execution. This represents the serverless

function that our FPGA sharing system should be able to manage.

In all the cases, the kernels are suitable for both CPUs and FPGAs and allowed us to compare the

two implementations on the same cluster in a transparent way, both from the application and from

the client points of view.

We tested each function by deploying them on the cluster on the same node of the Device Manager.

We placed the Function instance and the Device Manager on the same node to test the overhead

of the isolation layer. Moreover, in any case, the accelerated kernel and its host code should be as

near as possible as data transfers over network significantly reduce performance in our

experimental setup. Finally, during the tests, we sent an increasing number of requests to the

functions using Wrk [24], measuring the resulting latency.

K Experimental Results

Figure 8 , 9 and 10 show the average latency of Sobel, BFS and MM respectively. If we consider

the first set of experiments, the graph of Figure 8 shows that the average latency of Sobel is stable

until a breaking point, which is reached when the service saturates. When the number of requests

goes beyond the saturation point, the requests accumulates increasing the wait time in the network

queues and thus the latency that a request experiences increases.

For Sobel, the inflection point is situated at 80 r/s for the altera native implementation, as the board

can respond to at most 78.39 r/s without saturating. The CPU implementation reaches a maximum

of 40 r/s with two instances on the same node. We did not add more instances as the Portable

OpenCL implementation already uses all the available cores on the machine. Finally, we tested our

sharing runtime using 1, 2 , 4 and 6 instances on the same machine, all sharing the same

accelerator through our system. By adding more instances to the service, we were able to increase

the total utilization of the FPGA up to 96% and to improve the overall performance of the service.

In fact, with just one instance the micro-service reached 43.13 r/s, while it reached 65.61 r/s with

five instances and 66.4 r/s with six. Regarding the latency, our system added - 30ms delay w.r.t.

the altera native: this is the overhead introduced by the gRPC layer over the loopback interface.

Still, the system was able to outperform the CPU implementation.

We obtained similar results with the BFS and MM kernels. Figure 9(a) and 10(a) show the average

latency results for the BFS and MM applications respectively. In these cases the latencies of the

altera native execution, the shared one and CPU ones are the same (or of comparable magnitude,

as in the MM test). This happens as the 1Gb/s Ethernet link represents a bottleneck for the

execution of the tests. For Sobel, this does not represent an issue because the application accepts

a compressed format (jpeg) with size in the order of KBs, thus the bandwidth is not fully utilized

even at a high throughput.

However, the average size of a matrix/graph for MM/BFS is in the order of MBs, and the transfer

time represents a limit in the total latency of the application. To overcome this limitation, we decided

to test the system without passing data between Wrk and the application micro-services. Data is

passed just once at the beginning of the test, allowing to isolate the accelerator execution time from

the network bottleneck. We show the results for these tests in Figure 9(b) and 10(b). In the BFS

test, the latencies of the different implementations are similar. This depends mostly on the kernel

algorithm, which is memory-bound in all cases. For the MM test, instead, we can notice a great

difference between the altera native and shared implementations w.r.t. the CPU ones. In particular,

our system added a -40ms delay on average when the service was saturated, while the CPU was

two orders of magnitude worse in the same working condition (-2500ms for each requests,

compared to 200ms with our system). As for the maximum performance, altera native reached 26

r/s, our system achieved 26.95 r/s while the CPU obtained 1.83 r/s.

L. Second ExperimentalSetup

In a second test, the setup of the FPGA sharing system according to an embodiment of the

invention is composed of three nodes, one master and two workers. The master node (node A)

contains a 2.80Ghz Intel® Xeon®W3530 CPU, with 8 threads (4 cores) and 24GB of DDR3 RAM.

Each worker node (nodes B and C) is equipped with a 3.40Ghz Intel® Core™ 7-6700 CPU, with 8

threads (4 cores) and 32GB of DDR4 RAM. Each node is connected to the local network through

a 1Gb/s Ethernet link.

Each node contains a Terasic DE5a-Net FPGA board with an lnte®Arria 10 GX FPGA (1 150K

logic elements), 8GB RAM over 2 DDR2 SODIMM sockets and a PCI Express x8 connector

(version 3 for the workers, version 2 for the master).

We leveraged three accelerated cloud functions available in the State of the Art: the Sobel edge

detector and the Matrix Multiply (MM) kernel from the Spector benchmark suite [22] and PipeCNN

[25], which is an open-source implementation of an FPGA accelerator for Convolutional Neural

Networks (CNNs). This benchmark calls several kernels iteratively with multiple parallel command

queues to compute the CNN output. According to the Spector benchmark, we synthesized the

Sobel edge detector (also called Sobel operator) with 32 x8 blocks, 4 x 1 window with no SIMD

applied and a single compute unit, as it results in the best latency performance. For MM, we found

from [22] that the best design is with 1 compute unit, 8 work items for each unit, and a completely

unrolled block of 16 x 16 elements. Finally, we synthesized PipeCNN with AlexNet as in [25].

K. Experimental Results

K. 1 System overhead

We evaluated the system overhead on a single node, deploying one instance of the Device

Manager with a Docker Container connected to the FPGA. The host code was deployed on another

Docker Container on the same node. Our system leverages the local virtual network stack + shared

memory and PCI Express, while Native execution needs PCI Express only. We run each test by

increasing the input and output size to see the impact of the Remote Library communication

mechanism (both gRPC and shared memory) and the Device Manager queue. We tested each

input size 40 times averaging results and waiting 200ms after each call to have independent

measures. We skip PipeCNN here because it does not allow to change the input size. Results are

presented in Figure 4 .

Figure 11(a) shows the Round-Trip Time (RTT) for a write-read operation (first write, then read

synchronously) with total size from 1KB to 2GB for Native, FPGA sharing system, System in the

following, and the FPGA sharing system with shared memory, System shm in the following. The

pure gRPC implementation (i.e., the System to which the dashed lines in Figure 11(a) refers) shows

a total latency of four times w.r.t. the Native execution (to which the solid lines in Figure 11(a)

refers). This is due to protobuf overheads and three copies of the data buffers. The shared memory

implementation (i.e., System shm to which the dotted lines in Figure 11(a) refers) shows an

improvement in terms of latency and overhead, with a maximum overhead of 155ms when

transferring 2GBs. Most of the overhead is composed by the single memory copy operation, while

a smaller part (~ 2ms) is given by the gRPC control signals, which are used in both systems.

Figure 11(b) shows the latency measurements for the Sobel operator. In all cases, the kernel has

a linear behavior w.r.t. the input size. The Native (solid line) RTT starts from 0.27ms with a 10 x10

image (800 bytes sent and received), up to 14.53ms for the largest image (1920 x 1080 pixels,

read/write of ~ 8MB). System (dashed line) starts with an overhead of 2.46ms and reaches 24ms

with the largest image. System shm (dotted line), instead, has a constant ~ 2ms overhead w.r.t.

Native in all the experiments.

Figure 11(c) shows the latency measurements for the MM kernel. The MM accelerator is compute¬

intensive and the execution overhead between the Native and remote execution is low for both

communication systems (still remaining lower in the shared memory system, particularly, System

shm substantially overlaps with Native in Figure 11 (c)). The Native runtime shows a minimum RTT

of 0.45ms for the smallest matrices (16 x16 in both input and output matrices), but quickly rises up

to 3.571s (for 4076 x 4096 matrices). As in the Sobel results, both System and System shm show

a minimum RTT of ~ 2ms given by the control signals. System then reaches a maximum of 3.675s,

while System 1 sh stops at 3.588s, which is only 17ms more than Native.

The results of Figure 11 show that the overall impact of the System according to the embodiments

of the present invention depends on the complexity and operational intensity of the accelerator.

When the majority of the execution time is spent in kernel execution the overall overhead is low (as

in the MM example with a relative overhead of 0.27% for shared memory). Instead, with lower

operational intensity, the I/O latency affects more on the task even in the shared memory case (as

in Sobel with a relative overhead of 24.04%). This derives from the fact that the Native system does

not execute any additional data copy, while the System needs at least one copy to maintain full

OpenCL compatibility.

K.2 FPGAs time utilization

To test the FPGAs utilization, we run a set of multi-application, multi-node experiments. The goal

is to check if System is able to increase the FPGAs time utilization and the number of total requests

served without significant losses for the single tenant. Here we leverage System function for both

Native and System. For each experiment (Sobel, MM and PipeCNN with AlexNet), we deployed

five identical Functions for System, while we could deploy only three Functions in the Native

scenario (one for each device).

We tested each Function using Hey5 (a tool for HTTP load testing), running the experiments

multiple times with one connection per function. Table I shows the test configurations, where only

the first 3 columns are used for the Native scenario.

Use-Case Configuration 1st 2nd 3rd 4th 5th
Low load 20 rq/s 15 rq/s 10 rq/s 5 rq/s 5 rq/s

Sobel Medium Load 35 rq/s 30 rq/s 25 rq/s 20 rq/s 15 rq/s

High Load 60 rq/s 50 rq/s 35 rq/s 30 rq/s 10 rq/s

Low load 28 rq/s 2 1 rq/s 14 rq/s 7 rq/s 7 rq/s

MM Medium Load 49 rq/s 42 rq/s 35 rq/s 28 rq/s 2 1 rq/s

_ High Load _ 84 rq/s 70 rq/s 49 rq/s 42 rq/s 2 1 rq/s

Medium Load 6 rq/s 3 rq/s 3 rq/s 3 rq/s 3 rq/s
AlexNet

High Load 9 rq/s 9 rq/s 6 rq/s 6 rq/s 3 rq/s

Table I: Tests configurations overview, showing how many requests per second were sent to each function

for each benchmark.

We show the per-function results for Sobel in Table II.

Type Configuration Function Node Util. Latency Processed Target

sobel-1 B 2 1 .95% 2 1 .43 m s 17.25 rq/s 20.00 rq/s

sobel-2 A 22.57% 24.23 m s 15.00 rq/s 15.00 rq/s

System Low load sobel-3 C 13.22% 19.01 m s 10.00 rq/s 10.00 rq/s

sobel-4 A 7.49% 3 1 .98 m s 5.00 rq/s 5.00 rq/s

_ sobel-5 _ B_ 6.48% 27.16 m s_ 5.00 rq/s _ 5.00 rq/s

sobel-1 B 40.95% 19.45 ms 32.93 rq/s 35.00 rq/s

sobel-2 A 39.40% 23.62 ms 26.30 rq/s 30.00 rq/s

Medium Load sobel-3 C 32.85% 18.28 ms 24.98 rq/s 25.00 rq/s

sobel-4 A 29.85% 26.99 ms 19.98 rq/s 20.00 rq/s

sobel-5 B_ 18.75% 22.94 ms 14.97 rq/s 15.00 rq/s

sobel-1 B 60.31% 18.95 m s 49.58 rq/s 60.00 rq/s

sobel-2 A 39.15% 32.05 m s 26.63 rq/s 50.00 rq/s

High Load sobel-3 C 45.75% 17.82 m s 34.96 rq/s 35.00 rq/s

sobel-4 A 38.44% 22.56 m s 26.1 1 rq/s 30.00 rq/s

sobel-5 B_ 18.39% 2 1 .74 m s 15.00 rq/s 15.00 rq/s

sobel-1 A 30.41% 25.02 m s 19.49 rq/s 20.00 rq/s

Low load sobel-2 B 19.74% 2 1 .50 m s 14.74 rq/s 15.00 rq/s

sobel-3 C 13.73% 24.34 m s 9.75 rq/s 10.00 rq/s

sobel-1 A 5 1 .48% 26.04 m s 33.1 1 rq/s 35.00 rq/s

Native Medium Load sobel-2 B 37.19% 23.33 m s 27.95 rq/s 30.00 rq/s

sobel-3 C 34.22% 23.48 m s 24.23 rq/s 25.00 rq/s

sobel-1 A 58.10% 26.77 m s 38.36 rq/s 60.00 rq/s

High Load sobel-2 B 54.69% 23.95 m s 4 1 .80 rq/s 50.00 rq/s

sobel-3 C 44.81% 24.75 m s 32.61 rq/s 35.00 rq/s

Table II: Multi-function test results for the Sobel accelerator in terms of average latency.

The results are divided by scenario (System vs Native), configuration, and tested function. In the

low load configuration, both runtimes keep up with the target throughput with latency between 20

and 30ms. Results are in line with the overhead results, with System improving device’s utilization.

In the medium load configuration System has better latency for sobel-1 , sobel-2 and sobel-3 and

the other two functions effectively increases the board’s time utilization. Finally, in the high load

configuration, System 1 still improved the overall FPGAs time utilization with comparable latency

results for sobel-1 and sobel-3. However, Node A saturated in both cases as it is not able to keep-

up with the target throughput.

Regarding the requests throughput, Native has a difference w.r.t. the target of 2.25% in the low

load configuration, 5.23% and 22.22% for the medium and high load conditions respectively.

System 1 has instead averages of 5.01%, 4.67% and 19.85% respectively. Although System 1

supports more load, the response of the two systems are still comparable.

Table III shows the aggregate results for MM.

Type Configuration Utilization Latency Processed Target

Low load 43.49% 12.55 ms 76.96 rq/s 77 rq/s

System Medium Load 98.53% 11.57 ms 174.90 rq/s 175 rq/s

_ High Load _ 144.18% 10.69 ms 262.73 rq/s _ 266 rq/s

Low load 50.87% 2 1 .12 ms 60.49 rq/s 63 rq/s

Native Medium Load 103.22% 22.81 ms 106.84 rq/s 126 rq/s

_ High Load _ 122.97% 24.25 ms 121 .85 rq/s _ 203 rq/s

Table III: Multi-function test aggregate results for MM in terms of average latency, FPGA time utilization (overall

maximum 300%) and processed/target requests.

We do not show the detailed results for brevity as similar considerations can be made. The Native

scenario presents a higher difference between target and processed requests w.r.t. System, with

slightly higher latencies and a similar utilization. The average difference for System is of 0.04%,

0.05% and 1.22% for the low, medium and high load configurations.

Meanwhile, Native reaches 3.97% with a low load, 15.19% and 39.97% in medium and high load

conditions.

Finally, we show the aggregate results for AlexNet with the PipeCNN accelerator in Table IV.

Type Configuration Utilization Latency Processed Target

Medium Load 124.68% 132.89 ms 17.88 rq/s 18 rq/s

System High Load _ 202.08% 124.52 ms 29.81 rq/s_ 3 3 rq/s

Medium Load 96.22% 94.29 ms 1 1 .91 rq/s 12 rq/s
Native High Load_ 189.82% 9 1 .74 ms 23.57 rq/s_ 2 4 rq/s

Table IV: Multi-function test aggregate results for PipeCNN (AlexNet) with average latency, FPGA time

utilization (overall maximum 300%) and processed/target requests.

Because of the low number of requests that the accelerator is able to serve, we decided to test only

two configurations, with medium and high load conditions. The results show that Native has an

average latency of 94.29ms for medium load and 9 1 .74ms for high load, while System presents a

higher latency (132.89ms for medium and 124.52ms for high load). This happens as the host code

calls multiple times the kernels for each computation, increasing the overhead. Regarding the

difference between sent and processed requests, we have 0.63% for System and 0.68% for Native

in medium load conditions, while in high load conditions Native behaves better (1 .79% vs 9.64%).

However, in both configurations, sharing allows System 1 to reach a higher utilization and number

of processed requests.

REFERENCES

[1] A . Putnam, A . M . Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J . Demme, H.

Esmaeilzadeh, J. Fowers, G . P. Gopal and J . G . e . al., A reconfigurabie fabric for accelerating

large-scale datacenter services”, ACM SIGARCH Computer Architecture News, vol. 42, no.

3 , pp. 13-24, 2014.

[2] S. Asano, T. Maruyama and a . Y. Yamaguchi, “Performance comparison offpga, gpu ano

cpu in image processing”, international conference on field programmable logic and

applications. IEEE, 2009, pp. 126-131 , 2009.

[3] B. Sukhwani, B. B. B. Abali and a . S. Asaad, “High-throughput, lossless data compresion on

fpgas”, IEEE 19th Annual International Symposium on Field-Programmable Custom

Computing Machines. IEEE, 201 1, pp. 113-1 16, 201 1.

[4] P. Papaphilippou and a . W. Luk, “Accelerating database systems using fpgas: A survey”, 28th

International Conference on Field Programmable Logic and Applications (FPL). IEEE, 2018,

pp. 125-1255, 2018.

[5] X . Wei, C. H . Yu, P. Zhang, Y. Chen, Y. Wang, H . Hu, Y. Liang and and J. Cong, “Automated

systolic array architecture synthesis for high throughput cnn inference on fpgas”, Proceedings

of the 54th Annual Design Automation Conference ACM, 2017, p. 29, 2017.

[6] “Amazon EC2 F 1 instances”, https://aws.amazon.com/ec2/instance-types/f1/ retrieved on

2019.05.15.

[7] A . M . Caulfield, E. S. Chung, A . Putnam, H. Angepat, J. Fowers, M . Haselman, S. Heil, M .

Humphrey, P. Kaur and J.-Y. K . e . al., “A cloud-scale acceleration architecture”, The 49th

Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Press, p. 7 , 2016.

[8] E. Chung, J . Fowers, K. Ovtcharov, M . Papamichael, A . Caulfield, T. Massengill, M . Liu, D.

Lo, S. Alkalay and M . H. e . al., “Serving dnns in real time at datacenter scale with project

brainwave, IEEE Micro, vol. 38, no. 2 , pp. 8-20, 2018.

[9] W. Wang, M . Bolic and a . J . Parri, “PvFPGA: Accessing an FPGA-based hardware

accelerator in a paravirtuaiized environment”, International Conference on

Hardware/Software Codesign and System Synthesis, CODES+ISSS 2013, 2013.

[10] A . lordache, G . Pierre, P. Sanders, J. G . d . F. Coutinho and a . M . Stillwell, “Highperformance

in the cloud with fpga groups”, Proceedings of the 9th International Conference on Utility and

Cloud Computing. ACM, pp. 1-10, 2016.

[1 1] M . Asiatici, N. George, K . Vipin, S. A . Fahmy and a . P. lenne, “Designing a virtual runtime fot

FPGA accelerators in the cloud”, FPL 2016 - 26th International Conference on Field-

Programmable Logic and Applications, 2016.

[12] S. Mavridis, M . Pavlidakis, I . Stamoulias, C. Kozanitis, N . Chrysos, C. Kachris, D. Soudris

and a . A . Bilas, “VineTaik: Simplifying software access and sharing of FPGAs in datacenters”,

27th International Conference on Field Programmable Logic and Applications, FPL 2017, pp.

2-5, 2017.

[13] Z . Zhu, A . X . Liu, F. Zhang and a . F. Chen, “FPGA Resource Pooling in Cloud Computing”,

IEEE Transactions on Cloud Computing, vol. PP, no. c , p. 1, 2018.

[14] S. Ojika, A . Gordon-Ross, H. Lam, B. Patel, G . Kaul and a . J. Strayer, “Using fpgas as

microservices: Technology, challenges and case study”, 9th Workshop on Big Data

Benchmarks Performance, Optimization and Emerging Hardware (BPOE-9), 2018.

[15] S. Byma, J . G . Steffan, H . Bannazadeh, A . Leon-Garcia and a . P. Chow, “FPGAs in the cloud:

Booting virtualized hardware accelerators with OpenStack”, Proceedings - 2014 IEEE 22nd

International Symposium on Field-Programmable Custom Computing Machines, FCCM

2014, pp.109-1 16, 2014.

[16] E. Jonas, J . Schleier-Smith, V. Sreekanti, C.-C. Tsai, A . Khandelwal, Q . Pu, V. Shankar, J .

Carreira, K . Krauth and N . Y. e . al., “Cloud programming simplified: A berkeiey view on

serveriess computing”, arXiv preprint arXiv:1 902.03383, 2019.

[17] “Docker containers”, https://www.docker.com, retrieved on 2019.02.28.

[18] “Kubernetes”, https://kubernetes.io retrieved on 2019.05.17.

[19] “Openfaas serveriess system”, https://www.openfaas.com/ retrieved on 2019.05.17.

[20] “Openci specification”, version 1.2.

[21] "Prometheus", https://prometheus.io retrieved on 2019.05.17.

[22] Q . Gautier, A . Althoff, P. Meng and a . R. Kastner, “Spector: An OpenCL FPGA benchmark

suite”, Proceedings of the 2016 International Conference on Field-Programmable

Technology, FPT 2016, pp. 141-148, 2017.

[23] “Portable OpenCL runtime”, http://portablecl.org/ retrieved on 2019.05.17.

[24] “Wrk2 http benchmarking tool”, https://github.com/giltene/wrk2 retrieved on 2019.05.17.

[25] D. Wang, K. Xu and a . D. Jiang, “Pipecnn:An openci-based open-source fpga accelerator fot

convolution neural networks,”, International Conference on Field Programmable Technology

(ICFPT). IEEE, pp. 279-282, 2017.

CLAIMS

1. A hardware accelerators management system (1) for containerized and serverless

environments at least comprising

a domain layer on which a plurality of application containers and functions (60, 61) are

implemented,

a hardware layer in which a set of hardware accelerators are implemented and

a software layer configured for abstracting the application containers and the functions (60, 61) of

the domain layer from the hardware layer,

wherein the system (1) comprises a hardware interface (80, 90) to send tasks to and reconfigure

at least a portion of the processing means (70) implemented in the hardware layer,

wherein the system (1) comprises a software structure (40, 50, 63) that shares hardware

accelerators of the hardware layer between application containers and functions (60, 61) of the

domain layer,

wherein the software structure (40, 50, 63) performs scheduling and optimization algorithms on the

resource allocations of the hardware accelerators of the hardware layer for the application

containers and functions (60, 61) of the domain layer in terms of device time and/or space slot of

utilization,

wherein the scheduling and optimization algorithms comprises a monitoring structure interfacing

with processing means and with the software layer for reading performance metrics of at least one

processing means (70), and

wherein the software structure comprises at least one device manager (50) component connected

with the hardware interface (80, 90) and at least one remote library (63) component to interface

each application container and function (60, 61) with the at least one device manager (50)

component concurrently.

2 . The hardware accelerators management system of claim 1, wherein the hardware interface

is configured to communicate with at least a portion of the processing means of the hardware layer,

including Field-Programmable-Gate-Array (FPGA), Application-Specific-Integrated-Circuits

(ASIC), Digital Signal Processor (DSP) and Graphic Processing Unit (GPU) boards.

3 . The hardware accelerators management system of claim 1 or 2 , wherein the at least one

remote library (63) is configured for receiving method calls performed by an application and/or a

function (60, 6 1) implemented in the domain layer and forward such method call in an asynchronous

manner to a service endpoint exposed by the at least one device manager (50).

4 . The hardware accelerators management system of claim 3 , wherein the at least one device

manager (50) receives a plurality of method calls that requires hardware accelerators to be

performed from the at least one Remote Library (63) associated with a corresponding application

and/or function, and

wherein the at least one device manager (50) is configured to:

- create at least one task, the at least one task comprising a minimum sequence of called method

to be performed in a predetermined order, and

- forward the at least one task to the hardware interface (80, 90).

5 . The hardware accelerators management system of claim 4 , wherein the at least one device

manager (50) is configured to sequentially adding method to be performed in the at least one task

until a blocking method or an explicit finish/flush/barrier command is added.

6 . The hardware accelerators management system of claim 4 or 5 , wherein the at least one

device manager (50) is configured to inserting the at least one task queue (57) once created, and

wherein the device manager (50) further comprises at least one worker thread (55) configured to

pull and execute on the hardware accelerator tasks comprised in the task queue.

7 . The hardware accelerators management system of claim 6 , wherein the worker thread (55)

is configured to select which task pull from the task queue (57) based on at least one of the following

metrics associated with the hardware accelerator:

- number of requests received/executed by the device,

- number of in-flight requests,

- allocated memory,

- number of allocated buffers,

- hardware accelerator utilization,

- number of connected applications and instances.

8 . The hardware accelerators management system of any one of the preceding claims 3 to

7 , wherein the device manager (50) component interfaces with the hardware interface (80, 90) to

send multiple tasks in parallel to different hardware accelerators and/or to reconfigure the

processing means.

9 . The hardware accelerators management system of any one of the preceding claims 3 to

8 , wherein a respective remote library (63) is implemented in each application container or function

(60, 61) implemented in the domain layer.

10 . The hardware accelerators management system according to any one of preceding claims,

wherein the at least one device manager (50) and the at least one remote library (63) are configured

to communicate via a network connection, or via a shared memory area of the hardware layer on

which is deployed the software layer implementing both the device manager (50) and the at least

one remote library (63).

11. The hardware accelerators management system according to claim 10 , wherein the at least

one device manager (50) and the at least one remote library (63) are configured to are configured

to expose at least one of the following service:

application containers and functions (60, 61) registration and disconnection;

hardware accelerator information gathering;

reconfiguration requests;

buffers manipulation;

accelerator-related methods, and

command queue operations.

12 . The hardware accelerators management system according to any one of preceding claims,

wherein the software structure may comprise a central management component (40) interfacing

with the at least one device manager (50) and the at least one remote library (63) components to

perform scheduling and optimization algorithms on the resource allocations of the hardware

accelerators of the hardware layer.

13. The hardware accelerators management system of claim 12, wherein the central

management component (40) is configured to:

receive request of instantiation of functions and/or applications, and

for each function or application:

assign a domain layer resource for instantiating the function or application, and

assign at least one device manager (50) to the function or application, the device manger

(50) with the hardware interface (80, 90) associated with a hardware accelerator requested by the

function or application.

14. The hardware accelerators management system of claim 12 or 113, wherein the

scheduling and optimization algorithms performed by the central management component (40) use

system runtime performance indicators to efficiently allocate the resources of the hardware layer

to the application containers and functions (60, 61), such runtime performance indicators

comprising at least one among:

- number of requests received;

- number of in-flight requests;

- allocated memory, and

- current workload,

related to the hardware layer, one or more hardware accelerators implemented in the hardware

layer or one or more processing means of the hardware layer.

15. The hardware accelerators management system according to any one of preceding claims

12 to 14, wherein the at least one device manager (50) and the central management component

(40) are configured to communicate via a network connection to exchange network

message/methods called comprising at least one among:

hardware accelerator registration and removal from the central management component

reconfiguration request and validation of the hardware accelerator;

metrics pushing from the device manager (50) to the central management component (40),

and

periodic polling from the device manager (50) to the central management component (40)

and viceversa.

16 . The hardware accelerators management system according to any one of preceding claims

12 to 15, wherein the at least remote Library (63) and the central management component (40) are

configured to communicate via a network connection to exchange network message/methods

called comprising at least one among:

- application containers and functions (60, 61) registration and removal from the central

management component (40);

Instances of the application containers and functions (60, 6 1) registration and removal from

the central management component (40), and

hardware accelerator reconfiguration request and validation.

INTERNATIONAL SEARCH REPORT
International application No

PCT/ I B2020/054775

	abstract
	description
	claims
	drawings
	wo-search-report

