
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria
Scuola di Ingegneria Industriale e dell’Informazione

BlastFunction: an FPGA-as-a-Service system
for accelerated serverless computing

NECSTLab
Novel, Emerging Computing System Technologies Laboratory

presso il Politecnico di Milano

Advisor: Prof. Marco Domenico Santambrogio
Co-Advisor: Dott. Ing. Rolando Brondolin

Master of Science thesis of:
Marco Bacis

Matr. 873199

Academic Year 2018-2019

Alla mia famiglia e a Beatrice

Marco

Ringraziamenti
Questa tesi é il culmine di sei anni di impegno, fatica, ma anche vittorie e soddisfazioni.
Durante questo percorso ho incontrato persone che mi hanno aiutato nell’università e al
di fuori di essa, e senza le quali questo lavoro non esisterebbe.

Un primo grazie va il mio relatore Marco Santambrogio per avermi accolto alNECSTLab
e avermi guidato in un lungo percorso che é andato ben oltre questo lavoro di tesi. Tut-
te le opportunità e le sfide che mi hai offerto negli ultimi quattro anni mi hanno fatto
crescere e maturare, non solo nell’ambito accademico.

Un altro ringraziamento va a Rolando, colui che che ha seguito il mio lavoro, i miei
dubbi e le mie ansie durante tutto questo anno passato a supervisionarmi. I tuoi suggeri-
menti, idee e "spinte" sono stati fondamentali durante questo anno, e mi hanno portato
fin qui.

Grazie a tutti i ragazzi e ragazze del NECST, passati e presenti. Ognuno di voi mi ha
mostrato che é con la grinta e la voglia di fare che si va avanti (senza contare il calcetto!).
Grazie a voi il laboratorio é stato come casa per gran parte del mio percorso, e di questo
vi sono grato.

Ringrazio i miei compagni di disavventure al poli; chi ce l’ha fatta e chi ce la sta
facendo, e chi ha cambiato strada: Antonio, Daniele, Maddalena, Federico, Carlo, Jacopo
e tanti altri. Senza di voi questa avventura non sarebbe stata la stessa, tra lezioni, sushi
e ore e ore di divertimento per fuggire alla noia e alla difficoltà degli studi.

Grazie inoltre a Monica, Francesca e Giulia, con cui ho condiviso difficoltà e felicità
anche se in università diverse e con cui ho passato tanti momenti importanti assieme.
Siete le migliori amiche che si possa avere.

Grazie ai miei genitori Bramina e Lorenzo, perché mi avete supportato (e sopportato)
da sempre. Grazie per i vostri insegnamenti, consigli, conforto, per avermi capito nei miei
momenti peggiori e per aver festeggiato con me in quelli migliori. Grazie a mia sorella
Jessica, perché mi continua a mostrare che la tenacia e la testardaggine ripagano e che
c’é sempre qualcosa di nuovo da fare nella vita.

Infine grazie alla mia fidanzata, Beatrice. Grazie per tutto l’affetto, la comprensione,
il supporto, la pazienza, l’incoraggiamento, e per tutti i momenti passati assieme a te.
Senza di te questo lavoro non sarebbe stato possibile.

Marco

iii

Contents

Abstract IX

Sommario X

1 Introduction 1

2 Background and Problem definition 4
2.1 Cloud Computing . 4

2.1.1 Virtualization technologies . 5
2.1.2 Docker Containers . 8
2.1.3 Cloud Orchestration: Kubernetes 10
2.1.4 Serverless Computing . 12

2.2 Field Programmable Gate Array . 14
2.2.1 FPGA architecture . 14
2.2.2 FPGA Reconfiguration and Tools 15
2.2.3 Usages of FPGAs . 16
2.2.4 FPGAs in Cloud Scenarios . 17

2.3 Heterogeneous Computing and OpenCL 18
2.4 Problem definition and goals . 20

2.4.1 Problem definition . 20
2.4.2 Goals . 20

3 State of the art 22
3.1 Works classification . 22
3.2 Single Node FPGA Sharing . 23
3.3 FPGA Sharing in cloud environments . 25
3.4 FPGA Pooling Mechanisms . 26
3.5 Closing remarks . 28

4 System Design 29
4.1 BlastFunction Overview . 29
4.2 Remote OpenCL Library . 31
4.3 Device Manager . 33
4.4 Accelerators Registry . 34

4.4.1 Allocation algorithm . 36

II

4.4.2 Reconfiguration Flow . 39
4.5 Closing remarks . 42

5 Implementation 43
5.1 Communication layer implementation . 43

5.1.1 gRPC-based communication system 43
5.1.2 Shared Memory mechanism for buffers movement 46

5.2 System integration and Deployment . 48
5.2.1 Registry integrations . 48
5.2.2 Complete system Deployment . 52

5.3 Use cases implementation . 54
5.3.1 Spector: Sobel and Matrix Multiplication 54
5.3.2 PipeCNN: Neural Network acceleration 55
5.3.3 Integration and serverless implementation 56

6 Experimental results 58
6.1 System Overhead Evaluation . 58

6.1.1 Experimental Setup . 58
6.1.2 Overhead Evaluation Results . 59

6.2 Distributed System Evaluation . 63
6.2.1 Experimental Setup . 63
6.2.2 Single-application evaluation . 64
6.2.3 Multi-application evaluation . 69

6.3 Closing remarks . 74

7 Conclusions and Future work 75

Bibliography 77

List of Figures

2.1 Overview of the major virtualization strategies: (a) Bare Metal hypervisor
(b) Hosted hypervisor (c) OS-level virtualization. 6

2.2 OpenFaaS architectural overview [13]. 13
2.3 FPGA structure (simplified) with CLBs, IOBs, BRAMs and DSPs. 15
2.4 OpenCL standard memory hierarchy. 19

4.1 High Level Overview of BlastFunction components and their connections . 30
4.2 OpenCL Remote Library Architecture, highlighting the steps performed

in the asynchronous flow. 32
4.3 Example state machine for the read buffer operation 32
4.4 Device Manager Architecture, with the command queue methods flow

highlighted . 33
4.5 Accelerators Registry internal architecture 34
4.6 High-level view of the reconfiguration flow 40
4.7 Reconfiguration Flow view from the Device Manager perspective 41

5.1 Overview of the system Deployment in a Kubernetes cluster, showing the
main connections between Services and components. 52

5.2 Top-level architecture of PipeCNN, showing the OpenCL kernels and their
connection . 55

6.1 Latency overhead for read and write operations at increasing input and
output sizes. 59

6.2 Latency overhead for Sobel operator accelerator at increasing input and
output sizes. 60

6.3 Latency overhead for Matrix Multiply (MM) accelerator at increasing in-
put and output sizes (the "Native" latency line overlaps with the "Blast-
Function shm" line). 61

6.4 Device Utilization percentage (100% = One FPGA used 100% of the time)
with an increasing number of processed requests per second for Sobel func-
tion using Native and BlastFunction runtimes. 64

6.5 Sobel function latency with an increasing number of processed requests,
using Native and BlastFunction runtimes. 65

IV

6.6 Device Utilization percentage (100% = One FPGA used 100% of the time)
with an increasing number of processed requests per second for Matrix
Multiplication function using Native and BlastFunction runtimes. 66

6.7 Matrix Multiplication function average latency with an increasing number
of processed requests, using Native and BlastFunction runtimes. 67

6.8 Device Utilization percentage (100% = One FPGA used 100% of the time)
with an increasing number of processed requests per second for AlexNet
function using Native and BlastFunction runtimes. 68

6.9 AlexNet function average latency with an increasing number of processed
requests, using Native and BlastFunction runtimes. 68

List of Tables

6.1 Latency Overhead results for the shared memory implementation (w.r.t
native) . 62

6.2 Tests configurations overview, showing how many requests per second were
sent to each function for each use-case. 69

6.3 Multi-function test results for the Sobel accelerator, divided per System,
Configuration and function. 70

6.4 Multi-function test aggregate results for Sobel in terms of average latency,
utilization and processed/sent requests. 71

6.5 Multi-function test results for the Matrix Multiplication accelerator, di-
vided per System, Configuration and function. 72

6.6 Multi-function test aggregate results for Matrix Multiplication in terms of
average latency, utilization and processed/sent requests. 73

6.7 Multi-function test results for PipeCNN (with AlexNet accelerator), di-
vided per System, Configuration and function. 73

6.8 Multi-function test aggregate results for PipeCNN (with AlexNet acceler-
ator) in terms of average latency, utilization and processed/sent requests. 74

VI

Acronyms

AFI Amazon FPGA Image. 17, 18

ALU Arithmetic-Logic Unit. 16

API Application Programing Interface. 10, 11, 48

ASIC Application Specific Integrated Circuit. 17

AWS Amazon Web Services. 17, 18

BRAM Block RAM. 15, 16, 19, 54

CLB Configurable Logic Block. 14, 15, 16

CNN Convolutional Neural Network. 55, 74

CU Compute Unit. 18, 56

DFE Dataflow Engine. 26, 27

DSE Design Space Exploration. 54, 55

DSP Digital Signal Processor. 15, 16

FaaM FPGA-as-a-Microservice. 28

FPGA Field Programmable Gate Array. IX, X, XI, XII, 1, 2, 3, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 39, 42, 43, 48, 52, 53, 54, 55,
56, 58, 63, 69, 75, 76

HDL Hardware Description Language. 16

HLS High Level Synthesis. 16, 17

HTTP Hypertext Transfer Protocol. 51, 69

IaaS Infrastructure as a Service. 26

IC Integrated Circuit. 14

VII

ICAP Internal Configuration Access Port. 16

IOB Input-Output Block. 14, 15

LRN Linear Response Normalization. 56

LUT Look-up Table. 14

MAC Multiply-Accumulate. 56

MM Matrix Multiply. IV, 59, 61, 62, 63, 74

OS Operating System. 48

PDR Partial Dynamic Reconfiguration. 23

PE Processing Element. 18

PLA Programmable Logic Array. 14

PLD Programmable Logic Device. 14

PR Partial Reconfiguration. 24

QoS Quality of Service. 26

RPC Remote Procedure Call. 43, 44, 46

RTL Register Transfer Level. 16, 17

RTT Round-Trip Time. 59

SaaS Software as a Service. 26

SJF Shortest Job First. 27, 28

SLA Service Level Agreement. IX, X, 1, 38

SLO Service Level Objective. 26

SM Switch Matrix. 14, 16

VFR Virtual FPGA Resource. 25

VM Virtual Machine. X, 1, 5, 7, 8, 9, 11, 17, 18, 20, 22, 23, 24, 25, 26, 27, 30

VMM Virtual Machine Monitor. 5, 6, 7

Abstract

The last decade saw the exponential growth of cloud computing as the primary technology
to develop, deploy and maintain complex infrastructures and services at scale. Cloud
computing allows to consume resources on-demand and designing web services following
a cloud-native approach is fundamental to dynamically scale performance. However,
some workloads require computing power that current CPUs are not able to provide
and, for this reason, heterogeneous computing is becoming an interesting solution to
continue to meet Service Level Agreement (SLA) in the cloud.

Field Programmable Gate Arrays (FPGAs) represent one of the possible ways to
employ heterogeneous computing in cloud scenarios. Given that requests to services can
come at unpredictable rates, the underlying FPGA may not be utilized for 100% of the
time. From a cloud provider perspective, sharing would allow to improve time utilization
of the FPGA, and the serverless computing paradigm represents a promising approach
in this sense, as resources management is delegated to the cloud provider and each
functionality is scaled depending on the exact need of the moment. Within this context,
we propose that compute-intensive kernels should be accelerated with shared FPGAs
handled transparently by the serverless infrastructure: this will maximize utilization
while reaching near-native execution latency.

In this thesis work we propose BlastFunction, a distributed FPGA sharing system
for the acceleration of microservices and serverless applications in cloud environments.
BlastFunction provides a transparent and scalable system enabling multi-tenancy in the
cloud FPGA scenario, with a vendor-independent and reconfiguration-aware allocation
strategy integrated with an existing cloud orchestrator. The system includes a Remote
OpenCL Library to access the shared devices transparently and with a known interface;
multiple Device Managers which offer the underlying devices using a time-sharing ap-
proach and expose relevant metrics; a central Accelerators Registry which tackles the
goal of allocating the available devices efficiently using runtime performance metrics,
interacting with the Kubernetes orchestrator.

We evaluated the system with three experiments to observe first the introduced over-
head, then the behaviour in a small cluster with a single scaled function and multiple
functions. In all the experiments, BlastFunction was able to reach higher utilization and
throughput thanks to the sharing of the device, with minimal differences in latency and
requests drop given by the concurrent accesses and the additional I/O latencies.

IX

Sommario

Gli ultimi anni hanno visto la crescita esponenziale del cloud computing come tecnologia
primaria per lo sviluppo, la distribuzione e il mantenimento di infrastrutture complesse
e servizi a larga scala. Il Cloud Computing permette il consumo di risorse on-demand,
e il design di servizi web seguendo un approccio cloud-native é fondamentale per scalare
dinamicamente le performance. Inoltre, i cloud provider offrono un accesso multi-tenant
a un gruppo di risorse scalabili, che permettono ai servizi di crescere indefinitamente
seguendo performance e costi. Per raggiungere questi obiettivi i servizi cloud si sono
evoluti assieme ai corrispettivi sistemi di gestione. La tecnologia attuale comprende
diverse tecnologie di virtualizzazione, come Virtual Machines (VMs) e Containers.

Purtroppo, alcuni workload richiedono una potenza di calcolo a cui le CPU non sono
in grado di provvedere e, per questo motivo, l’heterogeneous computing sta diventando
una possibile soluzione per soddisfare i SLAs. Il primo tentativo per risolvere questo
problema é stato l’introduzione delle GPU nei datacenter e nelle istanze cloud per acce-
lerare workload compute-intensive (come il training e l’inferenza nel Machine Learning e i
sistemi di elaborazione video streaming). Le GPU offrono alte performance per workload
e algoritmi che sono compatibili col loro pattern architetturale parallelo. Il problema
é che le GPU eccellono nel processamento a batch, nel quale gruppi di record vengono
processati da un acceleratore si ad alto throughput, ma con un’alta latenza nel caso di
un singolo elemento [1]. Mentre molte applicazioni e framework cloud lavorano con una
modalità batch (es. MapReduce o training nel Machine Learning), molte applicazioni
cloud-native funzionano come servizi, nei quali la latenza é il fattore maggiormente con-
siderato, poiché ogni richiesta inviata dall’utente dovrebbe essere processata nel minor
tempo possibile. Inoltre, le GPU introducono dei problemi di efficenza energetica (poi-
ché consumano molto più delle CPU), che nel contesto di un datacenter risulta essere un
fattore di costo significativo.

In aggiunta alle istanze standard e equipaggiate con GPU, ultimamente sono state
introdotte istanze basate su FPGA. Le FPGA offrono alte performance e un consumo ri-
dotto di energia, grazie alla loro flessibilità a livello di architettura hardware. Infatti, esse
possono essere configurate per implementare qualsiasi algoritmo in modo ottimale, poiché
si può decidere a grana fine il livello di parallelismo di ogni componente dell’architettura
risultante in base alla elaborazione che bisogna effettuare. Inoltre, la loro riconfigurabilità
significa che il circuito fisico non cambia dopo ogni aggiornamento dell’implementazione
(come negli ASIC, i quali devono passare da fasi di design e produzione per ogni aggior-
namento dell’algoritmo accelerato). Questa funzionalità si adatta bene alle applicazioni

X

cloud-native, poiché sono continuamente sviluppate, aggiornate e distribuite nel loro ci-
clo di vita. Per questo, le FPGA hanno trovato uso in molteplici applicazioni. Contesti
come la ricerca web [2], elaborazione di immagini [3], compressione [4], operazioni su
database [5], inferenza di reti neurali [6] e molti altri possono trarre beneficio dall’uso
di architetture e acceleratori specializzati come le FPGA per rispondere tempestivamen-
te alle richieste degli utenti. Inoltre, l’introduzione delle istanze AWS F1 [7], oltre che
ai progetti Catapult [8] e Brainwave [9] da parte di Microsoft dimostrano che questa
tecnologia giocherà un ruolo chiave nei prossimi anni.

Per sfruttare al meglio le FPGA nel cloud, gli acceleratori hardware dovrebbero es-
sere progettati per soddisfare i requisiti di latenza e ottimizzare il throughput [8]. Le
richieste dalla rete esterna possono arrivare con una frequenza imprevedibile a di solito
non possono essere messe in batch, quindi minimizzare la latenza risulta fondamentale.
L’imprevedibilità delle richieste può portare a una sottoutilizzazione delle FPGA, quindi
riservarne una per ogni servizio che ne richiede può risultare in uno spreco di risorse.
Dalla prospettiva del cloud provider, la condivisione delle risorse permettebbe di mi-
gliorare l’utilizzo delle FPGA e in questo senso il paradigma del serverless computing é
un approccio promettente [10]. Il Serverless computing é un pattern architetturale per
applicazioni cloud nel quale la gestione dei server é delegata al cloud provider. Ogni
funzionalità dell’applicazione é distribuita dall’utente come funzione e schedulata, ese-
guita, scalata e fatturata in base ai on-demand. In questo contesto, proponiamo che i
kernel compute-intensive dovrebbero essere accelerati tramite FPGA condivise e gesti-
te in modo trasparente dall’infrastruttura serverless: questo massimizzerà l’utilizzo pur
raggiungendo una latenza vicina all’esecuzione nativa.

Allo stato attuale, un sistema completo per la condivisione e allocazione di FPGA in
ambiente cloud (comprendente microservizi e piattaforme serverless) non é ancora stato
realizzato. Inoltre, la maggior parte dei framework esistenti non sono trasparenti allo
sviluppatore, e non sono integrati con orchestratori in commercio (come Kubernetes).

In questo lavoro di tesi proponiamo BlastFunction, un sistema distribuito per la
condivisione di FPGA che permette di accelerare microservizi e applicazioni serverless
in ambienti cloud. L’obiettivo del lavoro proposto é di offrire un sistema trasparente e
scalabile per abilitare la multi-tenancy in uno scenario di FPGA cloud. Inoltre, offriamo
una strategia di allocazione vendor-independent e reconfiguration-aware integrata con un
orchestratore in commercio. Abbiamo deciso di focalizzarci su un approccio time-sharing
per il nostro sistema, in modo da massimizzare l’utilizzo del dispositivo (a livello di
tempo d’esecuzione dell’acceleratore) e ottimizzare l’uso dei dispositivi dalla prospettiva
del cloud provider.

BlastFunction comprende tre componenti principali: una Remote OpenCL Library,
multipli Device Managers e un Accelerators Registry centrale. La Remote OpenCL Li-
brary é un componente che permette alle applicazioni cloud (o funzioni serverless) di
accedere alla FPGA condivisa nel cluster. Si tratta di un’implementazione customizzata
dello standard OpenCL che astrae l’uso della connessione verso il dispositivo remoto e gli

altri componenti del sistema rispetto al codice host. Il Device Manager é un’applicativo
server presente su ogni nodo del sistema e connesso all’FPGA sottostante. E’ il com-
ponente che offre il meccanismo di time-sharing, esponendo un servizio tramite il quale
funzioni e applicazioni possono accedere al dispositivo concorrentemente. Inoltre, ogni
Device Manager espone metriche riguardanti il comportamento a runtime del dispositivo,
consentendo agli altri componenti di agire di conseguenza. Infine, l’Accelerators Registry
é il controllore centrale del sistema, che fa fronte all’obiettivo di allocare i dispositivi di-
sponibili efficacemente usando le metriche raccolte a runtime. In particolare, il Registry
traccia le metriche di utilizzo dei dispositivi e esegue un algoritmo di allocazione online
tenendo conto della riconfigurazione, integrandosi con l’orchestratore per la modifica di
applicazioni e deployment, in modo da decidere la loro posizione e integrarle col sistema.

Abbiamo valutato il sistema proposto usando benchmark disponibili al pubblico e
integrandoli come funzioni serverless, in modo da testarle sotto tre aspetti diversi. Il
primo aspetto é l’overhead introdotto dal sistema su un’applicazione eseguita su singolo
nodo. In media, il nostro sistema aggiunge tra lo 0.27% e il 24% di overhead, in base
al kernel eseguito e alla dimensione dei buffer, grazie a un efficiente meccanismo di tra-
sferimento dei dati. Abbiamo inoltre eseguito un secondo set di esperimenti per testare
il comporatmento del sistema in un piccolo cluster di tre nodi equipaggiati con FPGA
Altera, su una singola applicazione. I risultati mostrano un miglioramento nel through-
put (fino a 2.35 volte il numero di richieste processate per secondo) con lo stesso utilizzo
dell’acceleratore e senza perdite in termini di latenza. Infine, abbiamo testato il sistema
in uno scenario di non saturazione ma con più applicazioni (simulando la presenza di
più tenants che condividono il dispositivo). In questi ultimi esperimenti, BlastFunction
é stato in grado di raggiungere un utilizzo maggiore del dispositivo e un numero più alto
di richieste processate grazie proprio alla condivisione dell’FPGA tra più applicazioni (5
invece che 3 col sistema nativo), con differenze minime in latenza e numero di richieste
non soddisfatte.

Il testo é organizzato come segue:

• Il Capitolo 1 da un’introduzione generale al lavoro;

• Il Capitolo 2 offre una panoramica delle tecnologie e del contesto, oltre che del
problema che viene affrontato;

• Il Capitolo 3 descrive i lavori presenti nello stato dell’arte;

• Il Capitolo 4 mostra e descrive il design del sistema proposto;

• Il Capitolo 5 dettaglia l’implementazione del sistema e dei casi di test;

• Il Capitolo 6 presenta i risultati sperimentali ottenuti per validare il sistema pro-
posto;

• Infine, il Capitolo 7 riporta le conclusioni del lavoro e sottolinea i possibili lavori
futuri.

Chapter 1

Introduction

The last decade saw the exponential growth of cloud computing as the primary technology
to develop, deploy and maintain complex infrastructures and services at scale. Cloud
computing allows to consume resources on-demand and designing web services following
a cloud-native approach is fundamental to dynamically scale performance. Moreover,
cloud systems provide multi-tenant access to a scalable pool of resources, which allows the
services to scale indefinitely with measured performances and costs. To reach such goals,
cloud systems have evolved, along with the underlying resource managers. The current
technology comprises different virtualization techniques, such as VMs and Containers.

However, some workloads require computing power that current CPUs are not able to
provide and, for this reason, heterogeneous computing is becoming an interesting solution
to continue to meet SLAs. The first attempt in solving this issue was the introduction
of GPUs into datacenters and cloud computing services, in order to accelerate compute-
intensive workloads (such as Machine Learning training and inference and streaming
video processing). GPUs offer relatively high performances for workloads and algorithms
that fit into their architectural and parallel pattern. The issue is that GPUs excel at
batch processing, in which batches of records are sent for processing in a high-throughput
accelerator, but provide high latency when processing a single input record [1]. While
many cloud applications and frameworks work in a batch fashion (e.g. MapReduce or
Machine Learning training), many cloud-native applications work as services, in which
latency is the major performance factor considered, as each request coming from a user
of the service should be processed in the lowest time possible. Moreover, GPUs introduce
power efficiency issues (as they consume more power than conventional CPUs) which in
a datacenter scenario might be a significant cost factor.

In addition to standard and GPU-enabled instances, new resources available in cloud
computing services are FPGA-based compute instances. FPGAs provide high level per-
formances and low energy consumption, thanks to their flexibility in terms of hardware
architecture. In fact, an FPGA can be configured to implement any given algorithm in an
optimal way, as it is possible to finely tune the level of parallelism for any component of
the resulting architecture based on the computation that has to be done. Moreover, their
reconfigurability means that the physical chip does not change after every implementation
update (as in ASICs, which need to pass through a design and manufacturing phase on

every algorithm change). This feature fits well with cloud-native applications, as they
are continuously developed, updated and deployed through their lifetime. Thus, FPGAs
found their use in a wide variety of applications. Workloads such as web search [2], image
processing [3], compression [4], database operations [5], neural network inference [6] and
many others can benefit from the use of specialized architectures and accelerators like
FPGAs to timely react to the end users requests. Moreover, the introduction of the AWS
F1 instances [7] as well as project Catapult [8] and project Brainwave [9] from Microsoft
demonstrates that FPGAs will play a key role in the cloud in the next years.

To exploit FPGAs at their best in the cloud, hardware accelerators should be de-
signed to meet latency requirements while optimizing throughput [8]. Requests from the
outside network can come at unpredictable rates and they usually cannot be batched,
thus minimizing latency becomes fundamental. The requests unpredictability can lead to
an underutilization of the FPGAs, thus reserving one FPGA for each service that needs
it can result in a waste of resources. From a cloud provider perspective, sharing allows
to improve time utilization of the FPGA and the serverless computing paradigm can be
a promising approach [10]. Serverless computing is an architectural pattern for cloud
applications where server management is delegated to the cloud provider. Each applica-
tion functionality is deployed by the user as a function and scheduled, executed, scaled
and billed depending on the exact need of the moment. Within this context, we propose
that compute-intensive kernels should be accelerated with shared FPGAs handled trans-
parently by the serverless infrastructure: this will maximize utilization while reaching
near-native execution latency.

To the best of our knowledge, a complete system for FPGA sharing and allocation in
a cloud scenario (including microservices-based and serverless platforms) is still missing.
Moreover, most of the existing frameworks and systems are not transparent to the applic-
ation developer, and are not integrated with existing and known container orchestrators
(such as Kubernetes).

In this thesis work we propose BlastFunction, a distributed FPGA sharing system
for the acceleration of microservices and serverless applications in cloud environments.
The goal of the proposed system is to provide a transparent and scalable system enabling
multi-tenancy in the cloud FPGA scenario. Moreover, we aim at providing a vendor-
independent and reconfiguration-aware allocation strategy integrated with an existing
cloud orchestrator. We decided to focus on a time sharing approach for our system, in
order to maximize the devices utilization (in terms of accelerator execution time) and
optimize the use of devices from the cloud provider perspective.

BlastFunction is composed of three main components: a Remote OpenCL Library,
multiple Device Managers and a central Accelerators Registry. The Remote OpenCL
Library is a component which allows client applications or serverless functions to ac-
cess the shared FPGAs in the cluster. The library is a custom OpenCL implementation
which abstracts the use of the remote device access protocol and the communication
to the other components of the system from the host code. The Device Manager is a

2

server application deployed on every node in the system and connected to each under-
lying FPGA board. It is the component providing the time-sharing mechanism, as it
exposes a service through which functions and application can access the device concur-
rently. Moreover, each Device Manager exposes metrics about the runtime behaviour of
the device, allowing the other components to act accordingly. Finally, the Accelerators
Registry is the central controller of the system, which tackles the goal of allocating the
available devices efficiently using runtime performance metrics. It does so by tracking
the device utilization metrics from the Device Managers and performing an online device
allocation algorithm which takes also care of reconfiguring the devices at runtime. In
addition, it intercepts the deployment and removal of applications inside the cluster to
integrate them with the system and perform the allocation algorithm.

We evaluated the proposed system using publicly available benchmarks and embed-
ding them as serverless function, testing three different aspects. The first aspect is the
overhead introduced by system on a single node and a single application. We show that
our system adds a minimal overhead thanks to an efficient buffer transmission mechan-
ism, between 0.27% and 24% depending on the executed kernel and on the size of the
transferred buffers. We performed the second set of experiments to test the behaviour of
the system in a small, three node cluster equipped with Altera FPGAs, on a single applic-
ation. The results show major improvements in the throughput (up to 2.35x maximum
requests processed per second) with the same devices utilization and without losses in
the response latency. Finally, we tested the system in a non-saturated scenario but with
multiple applications (simulating the presence of multiple tenants sharing the devices).
In this experiment, BlastFunction was able to reach higher utilization and number of
processed requests thanks to the sharing of the device with multiple functions (5 instead
of 3 of the Native system), with minimal differences in latency and unprocessed requests.

This thesis is structured as follows:

• Chapter 2 provides an overview of the technologies and context, along with the
problem that this work addresses;

• Chapter 3 describes the state of the art;

• Chapter 4 shows and details the proposed System Design;

• Chapter 5 digs into the implementation and deployment of the system and the test
cases;

• Chapter 6 presents the experimental results gathered to validate our system;

• Chapter 7 draws the conclusions and presents the future directions of this work.

�

3

Chapter 2

Background and Problem definition

This chapter gives an overview of the main technologies and concepts on which this thesis
is based, and defines the challenges and the goals of the proposed system. Section 2.1
provides an overview of cloud computing and related concepts, along with a description
of orchestration and serverless systems that are used in the proposed work. Section 2.2
gives a background on FPGA technology and their use. Section 2.3 describes the OpenCL
heterogeneous computing system. Finally, Section 2.4 defines the problem addressed by
this thesis work and the goals of the proposed system.

2.1 Cloud Computing

As stated by NIST (National Institute of Standards and Technology) in [11], Cloud
Computing is “a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources that can be rapidly provisioned and
released with minimal management effort or service provider interaction“. By breaking
down the definition and expanding it, we can highlight the main characteristics of a cloud
computing system:

On-demand and Network Access The cloud users can access the resources offered
by the cloud provider (e.g., servers, storage, application) over a broadband and
high performance network connection, either through a public connection or a
private/local one (in the case of a private cloud). In addition, the resources can be
provisioned with a self-service automatic mechanism, without human intervention
by the cloud provider. For example, servers and storage space can be requested
through a web service or a command line, and their provisioning is performed
without interacting with human operators.

Resource Pooling and Multi-Tenancy Resource Pooling means that multiple clients
and applications access the same resources in a scalable way. The accessed resources
quantity is chosen in order to fit the client’s requirements, without requiring any
changes in the application. Multi-Tenancy is an addition to the concept of resource
pooling, as in this case multiple users access the same resources, but retain privacy
and security over the informations. In addition, each tenant (application or user)

2.1. Cloud Computing

sees the system as its own, not noticing that the system is shared with multiple
tenants. This technique allows applications and service to be easily deployed in
the cloud system without changes in their behaviour, and allows to bill each tenant
differently based on their actual resources usage.

Elastic Scalability The resources offered by the cloud system should scale up or down
rapidly and automatically, based on the current service load or the user requests.
This characteristic allows the user to pay only for the current resources which are
used by its services, and to face unforeseen conditions (e.g., sudden spikes in the
number of requests for a service) without keeping idle resources.

Measured Services The cloud provider measures all the resources which are offered
by the system. The measurements are done at different abstraction levels (e.g.,
storage, number of users or services, total CPU load). This mechanism helps the
provider to keep track of the offered services transparently and to provide a “pay
for use“ price model to the user.

To provide this kind of technology, different tools and concepts have been developed.
In this section, we will highlight the main technologies related to the provisioning of
resources in cloud computing (mostly processing resources).

Section 2.1.1 explains virtualization in the form of VMs, which was the first technology
exploited to offer cloud services. In Section 2.1.2 we provide a description of contain-
erization (in its most famous form, Docker Containers) and its main features. Then,
Section 2.1.3 gives a brief overview over the main orchestration technologies employed
in the last years used to manage VMs and containers in cloud scenarios. Finally, Sec-
tion 2.1.4 describes the last technology introduced in cloud computing scenarios, which
is serverless computing.

2.1.1 Virtualization technologies

Virtualization refers to the process of creating a virtual resource (e.g., processor, storage,
network) instead of a physical resource. In the context of this thesis, we will refer to
virtualization as hardware virtualization, which consists in creating a virtual hardware
platform (VM) able to run an operating system.

Virtualization is performed on a given hardware platform by a host software (called
Virtual Machine Monitor (VMM) or Hypervisor), which creates a simulated environment
(the VM) for the guest software. The guest software will then run on the simulated
platform as if it was running on the real hardware platform, with some limits introduced
by different policies regarding the access to physical system resources. In fact, the VMM
may limit the guest software’s access to specific or partial physical resources such as
storage or networking, depending on the virtualization policy defined on the host system.
This mechanism allows to isolate the guest from the host system (or other guests) and
to control the access to the underlying resources, which may be shared between multiple
guests.

5

2.1. Cloud Computing

Hardware

Hypervisor

VM

App

Libs

Guest
OS

VM

App

Libs

Guest
OS

VM

App

Libs

Guest
OS

(a)

Hardware

Hypervisor

VM

App

Libs

Guest
OS

VM

App

Libs

Guest
OS

VM

App

Libs

Guest
OS

(b)

Host OS

Hardware

Container

App

Libs

(c)

Host OS

Container

App

Libs

Container

App

Libs

Figure 2.1: Overview of the major virtualization strategies: (a) Bare Metal hypervisor (b) Hosted
hypervisor (c) OS-level virtualization.

Different kind of virtualization mechanisms can be found, based on the level at which
the VMM runs and the virtualization method used. The first characterization of a
virtualization system is given by the level at which the VMM/Hypervisor runs:

Type 1 - Bare Metal A bare-metal hypervisor (Figure 2.1a) runs directly on the host’s
hardware to control the hardware and the guest operating systems. In this way,
is provides a high-performance access to the hardware from the guest machines
and do not have the overhead of an additional host OS. Examples of bare metal
hypervisors are Microsoft Hyper-V, VMWare ESXi or Xen.

Type 2 - Hosted A hosted hypervisor (Figure 2.1b) runs over an existing host op-
erating system. The host OS manages the underlying hardware devices, so the
hypervisor is more flexible in terms of compatible devices. Moreover, the VMM
management is easier as it can be done from the host OS, which on the other hand
requires to use part of the host resources (such as memory or processor). Examples
of hosted hypervisors are VirtualBox, KVM or VMWare Player.

The second distinction that characterizes virtualization systems is the actual virtu-
alization method used:

Full Virtualization With full virtualization, the VMM provides a full virtualization of
the underlying hardware, including the full instruction set, I/O operations, inter-
rupts and memory access. This mechanism allows to run unmodified guest OSes,
but it requires the complete hypervisor mediation in order to work.

Paravirtualization In this case, the VMM and the guest OS collaborates, meaning
that the VMM presents an interface similar (but not identical) to the underlying
hardware to reduce the execution of expensive tasks for the virtualized environment.

6

2.1. Cloud Computing

Thus, the guest OS must be aware of the virtualization in order to use the VMM
interface.

Operating System Virtualization OS-level (or kernel-level) virtualization (Figure 2.1c)
allows to run private servers on top of the native host operating system. In this
way, the host provides native performance and access to the underlying hardware.
The issues are that the operating system is limited to the host OS and that the
host kernel must be compatible with this virtualization method.

Hardware Assisted Virtualization This kind of virtualization relies on the underly-
ing host processor capabilities to provide the virtualization interface used by the
guest OSes. In particular, hardware assistance allows to run full and para virtu-
alization at high performance without OS modifications. The issue is that this
technique requires explicit support in the host CPU.

Virtualization plays an important role in cloud computing, as it allows the cloud
provider to share the underlying hardware to multiple tenants. In fact, a VM can be
created with a different share of resources from the host system, such as memory, stor-
age or number of processors. This provides an implementation of the elastic scalability
characteristic previously described at the beginning of this section. Virtualization also
provides a standard and consistent development, building and deployment environment
to the application developer and the system administrator, as all the application-specific
configurations and dependencies can be encapsulated inside a VM, which can be moved
across the cloud platform and among different servers in order to better manage the cloud
system, without having to install the application every time. Finally, VMs provides an
isolation mechanism to secure the deployed applications, as that the data processed by
one application inside a VM cannot be accessed by other applications on different VMs.
This allows to isolate the applications from different tenants, and to offer the cloud service
to multiple organizations at the same time.

Virtualization presents also issues and challenges in addition to the advantages just
described. A first issue related to virtualization (especially full virtualization) is the
overhead introduced by the VMM. In fact, every time the guest OS performs a system
call or requires to receive interrupts from the underlying hardware, the process has to
pass through the hypervisor, which controls if the operations can be done by the guest.
In case of a hosted hypervisor, the process latency may further increase because the
host OS might also be involved. Para and OS-level virtualization mechanisms suffer
less overhead, as the guest may communicate less with the hypervisor and more with
the hardware. In any case, the performance of the virtualized application may be lower
than the same application run on the host system, and the decrease in performance
must be take into account when designing the service to run in a cloud environment.
Moreover, the same issue applies to the virtualized devices (such as network devices),
as the underlying hardware device may be shared among multiple applications which
are using it concurrently without being aware of it. Another issue of virtualization is

7

2.1. Cloud Computing

related to the size of VMs. In fact, if the guest OS is fully virtualized, this means that
each VM in the system must contain all the OS files, in addition to the application and
its dependencies. If we take into account all the applications inside the cloud system,
this mechanism introduces a significant overhead in terms of storage and memory, as
each running application requires its OS and libraries to be loaded on disk and memory
separately.

2.1.2 Docker Containers

As described in the previous section, OS-level virtualization allows to run private and
isolated user-space instances of a given application or service on top of the host operating
system. Many OS-level virtualization technologies has been created in the last years,
starting from chroot (which allowed to partially isolate the filesystem between different
applications) to LXC and Docker (which allows to run completely isolated containers).
In this section, we are going to describe the main functionalities of the software we used to
build and deploy our system’s components in a virtualized environment, which is Docker.

Docker [12] is an OS-level virtualization platform first developed in 2013 by Docker
Inc. It allows to develop and deploy software packages called containers. A container
is essentially an isolated package running on the system which contains the application
binary, its dependencies and all the needed software libraries and runtimes (including
the OS distribution in some cases). The Docker runtime runs containers on the host OS
without virtualizing the underlying hardware, thus avoiding a full virtualization overhead.

Docker offers multiple functionalities related to the creation and management of con-
tainers inside a system. The first distinction we need to make is between images and
containers. A container image is the static definition of a container. The image contains
a filesystem snapshot, which includes all the libraries and dependencies needed by the ap-
plication to run. In addition, it defines useful metadata about the container which will be
run, such as the environment variables needed and the exposed ports. Finally, it defines
the entrypoint and the actual command which will be run when the container is started.
Container images can be created and stored on a single host, or can be uploaded and
downloaded from a registry, which is a storage service for container images. Registries
can be public or private (internal to the organization, or with different authentication
and authorization systems). A container is instead an instance of the image which is
actually run on the host system. Docker allows the user to start multiple container in-
stances on the same host or on different hosts, in order to scale the offered service based
on the load that the application has to serve. When starting a container, the Docker
engine takes a copy of the image and runs the entrypoint and the command indicated in
that image. Being the container a new copy of the base image, all the changes made by
the application during its lifetime are not saved on the image filesystem, meaning that
the container storage is ephemeral. In addition to running containers, docker provides
also a virtual networking environment and the ability to mount external filesystems and
devices at runtime. This allows to expose the containerized application to the cluster or

8

2.1. Cloud Computing

the external network, and to store and update a non-ephemeral filesystem external to
the image one. For example, a database engine running in a container will be able to
write and read the database content on a stable storage.

Docker performs the virtualization process by using many underlying components,
some of which are included in the Host OS kernel. If we look at the components used on
the Linux kernel in particular, Docker relies on:

Namespaces Namespaces provide the first level of isolation, as they limit the access to
certain resources and parts of the OS (e.g., processes, network, filesystem). They
are used to provide a specific view of the system to the application, for example
providing a limit on the PIDs that can be seen (and changing the virtual PID of
the application) or on the filesystem (effectively creating a chroot environment for
the containerized application).

Control Groups Control groups (cgroups) allow Docker to share available hardware
resources to containers and optionally enforce limits and constraints. For example,
the developer may want to limit the memory available to a specific container to
avoid security issues (e.g., exhausting the host OS memory).

Union Filesystem Union filesystems are filesystems that work by creating layers. In
this way, if multiple containers share any layers (e.g., the OS or library layers) these
layers can be shared among them during storage (but not while running).

These components were first incorporated in a format called libcontainer. Starting
from Docker 1.11, these components and other functionalities have been moved to new
projects, in order to standardize the underlying containers technology. The lowest com-
ponent in the stack is called runc, and it is a lightweight tool which is only meant to run
containers. Thus, runc does not manage external resources such as network or filesystem
volumes. Runc is then managed by another component called containerd, which exposes
a service used by container tools such as Docker. When the Docker daemon wants to
start a container, it sends the container image and other information (such as the virtual
network interface and the external mounts) to containerd, which forwards the commands
to runc. Finally, runc will start the container and notify the upper levels.

The main advantage of Docker w.r.t VMs is the reduced overhead, given by the fact
that it does not perform hardware virtualization and does not intercept system calls and
access to devices, as they are managed by the host OS. The absence of hardware virtu-
alization means however that the applications must be compatible with the underlying
hardware architecture, or that there must be a different version of the application for
every different architecture. Most cloud computing environments use a homogeneous
architecture, at least in terms of CPU ISA (usually x86/64), so the issue is mitigated.

Another advantage of Docker containers is the reduced size of a container image w.r.t
a VM. In fact, a VM contains the entire guest OS, drivers, libraries and the application,
while a container needs only the application and its dependencies, as the OS libraries
and drivers are provided by the host.

9

2.1. Cloud Computing

The drawback is that there may be compatibility issues between containers and the
host system, if the containerized application has been developed for a different OS. For
example, at the beginning Docker allowed only Linux distributions to be run as contain-
ers, by running natively on linux hosts and using an underlying hypervisor on Mac OS
and Windows systems. Nowadays, it is also possible to run Windows containers, but
only on compatible Windows hosts as they require to use the underlying system DLLs
and components. In general, as with every OS-level virtualization system, compatibility
issues may arise if the application and the host system are not compatible.

2.1.3 Cloud Orchestration: Kubernetes

As stated in Section 2.1, one of the main characteristics of cloud computing is elastic
scalability, which means that the offered services and infrastructure should scale rapidly
and automatically based on the workloads. To enforce these requirements, multiple tools
and systems have been created. The aim of this tools is to efficiently manage the resources
offered by cloud platforms automatically and with less effort by the system administrator.
In this section, we are going to describe a cluster management tool which is frequently
used in cloud computing systems, called Kubernetes.

Kubernetes is a portable and extensible open-source platform for managing contain-
erized workloads and services. Its aim is to facilitate both declarative configuration and
automation of services and jobs inside a cluster (either on-premise or in a cloud en-
vironment). In particular, it offers a lot of features, such as deployment, scaling, load
balancing, logging, and monitoring of services and workloads in general. These features
can be removed or added based on the system requirements, as the platform can be
extended with additional components.

Architecture Overview

Kubernetes allow to manage a cluster of physical and virtual machines using a shared
network to communicate between each server. The cluster is the platform where all the
components and capabilities are configured and managed. The main distinction in a
kubernetes cluster is between master and node servers.

The master server in a kubernetes cluster acts as the primary control plane for the
services and workloads deployed inside the cluster. The role of the master is, in particu-
lar, to expose an Application Programing Interface (API) for users and clients. This API
is used by both external users and internal components of the system in order to change
the cluster status and the deployments inside the cluster. Also, it’s used by external
components in order to extend the platform. The master server includes multiple com-
ponents in order to perform its duties. These components may be installed on a single
machine or on multiple machines in a distributed fashion, depending on the size of the
cluster or the availability requirements. The master components are:

• etcd is a distributed key-value store which represents the main storage for the

10

2.1. Cloud Computing

cluster configuration data,

• kube-apiserver exposes the Kubernetes API to the users and applications,

• kube-controller-manager manages workloads and their lifecycle, along with specific
controllers (for example for the replication of workloads),

• kube-scheduler assigns workloads to the available nodes in the cluster,

• cloud-controller-manager allows kubernetes to interact with the external cloud pro-
vider’s system (if available) in a transparent way.

A node in a kubernetes cluster is a server that perform work by running contain-
ers. Node servers have components which are required to run the containers and to
communicate with the master component. In particular:

• the container runtime (e.g., Docker) allows to run the containers on the node,

• kubelet is a service which acts as the main contact point with the master API and
manages the workloads by controlling the container runtime,

• kube-proxy manages the virtual networking environment on the node and allows all
components and workloads/containers to communicate with the rest of the cluster.

Kubernetes Resources and Objects

While containers represent the basic block managed in a cluster in addition to VMs,
kubernetes provides additional layers on top of them. Moreover, additional resources
and object types can be used to better represent the cluster configuration.

A Pod is the most basic unit which can be managed with kubernetes, as it’s the
unit which is actually assigned to nodes (it is not possible to assign a single container
to a node). A Pod represents one or more tightly coupled containers that are seen as a
single application by the system. In particular, the user can define a Pod template by
listing the containers it is made with, along with specific metadata regarding additional
requirements (such as resources limits and requests). All the containers inside a Pod will
share the IP address, environment and volumes.

In general the user does not work with single Pods, but he will define a specific way
in which the Pods should be deployed into the cluster. A group of identical Pods is
controlled by a Replica Set. It is defined by including the pod template with additional
parameters regarding the number of replicas and how the Pod should be replicated.

Deployments are one of the most common workloads, and give a higher degree of
control over Replica Sets. A Deployment defines a desired state of the system which
must be reached. For example, the user may define a number of desired replicas for the
same Pod, or decide to scale up or down that number. The Deployment Controller will
then notice the change in the Deployment definition and perform the required operations

11

2.1. Cloud Computing

in order to reach that state. In addition, Deployments allow to use selectors, labels and
other metadata in addition to the Pod/ReplicaSet definition. Finally, a Deployment may
perform rolling updates, in which older Pods are swapped with a new version one at a
time (or with other policies) in order to keep the application online.

In addition to Deployments, there exist other kind of controllers that allow the user
to define a different Pods management policy. For example, StatefulSets offer ordering
and uniqueness guarantees to Pods that need persistent data handling (e.g., databases)
or persistent naming. DaemonSets run a copy of the underlying Pod on every node
in the cluster that meets a certain requirement. They are useful for application that
must run on every node, such as monitoring or logging services. Finally, Jobs allow to
define task-based workflows instead of long-running services. A Job may be any batch
processing application which must run until completion. The jobs controller will schedule
pods in order to meet the completion requirement, and can also be used to parallelize
the computation on a coarse grain.

Apart from Pods and Controllers, kubernetes allows to define additional resources.
A Volume represents the basic storage unit inside kubernetes. All the containers inside
a Pod share the same Volume, which is however deleted when the Pod is removed.
Persistent Volumes instead are not deleted, and can be shared among multiple Pods.

A Service is a component which acts as an internal load-balancer, and allows to
expose the application served by multiple pods as a single entity, by providing a stable
endpoint. Thanks to this, it is possible to scale up and down the number of Pods and face
failures without changing the endpoint. A service can also be exposed outside the cluster
as an external service using an Ingress, which acts as a router for multiple services.
Additionally, the service can be connected to an external Load Balancer, such as the
cloud provider’s one.

2.1.4 Serverless Computing

Serverless computing is a cloud computing model in which the cloud provider manages
the hardware infrastructure and provides automatic scaling of the compute resources
based on the amount of resources consumed by the application. This model presents a
series of advantages, the first being that the cost model is extremely elastic and follows
almost linearly the resources usage of the application. In fact, the user does not need to
reserve additional resources in order to face spikes in the application load. Moreover, the
scaling features are automatically performed by the cloud provider, which can employ
optimizations aimed at reducing the user and its own costs of service for the cloud
infrastructure. One of the disadvantages for the user is instead that the total price for
the service is difficult to estimate, as it means estimating the application resources in
detail.

One of the most used severless paradigms is Function-as-a-Service (FaaS), in which
the user provides the code for each function in the application in a separate way in order
to have it automatically managed by the cloud provider. Multiple functions are then

12

2.1. Cloud Computing

Figure 2.2: OpenFaaS architectural overview [13].

connected through standard interfaces and protocols (e.g., REST, JSON, gRPC) in order
to create the entire application. This allows the developers to decouple the application
and apply a differentiated scaling mechanism for different parts of the application, but
also adds challenges in terms of distributed system debugging.

OpenFaaS

OpenFaaS [14] is an open-source framework for the deployment of serverless applications.
The framework can be deployed in container-based clusters such as Docker Swarm or
Kubernetes, and offers both a web UI and a CLI to build and deploy functions. A
general overview of the framework can be seen in Figure 2.2. The most important
component of the framework is the Gateway. The gateway is the main endpoint for
the system, meaning that functions are invoked based on the requests arriving to it. It is
also responsible for the automatic deployment and scaling of function instances based on
the developer requirements and the functions load. The Prometheus and AlertManager
components are external to the OpenFaaS system. The Gateway exposes metrics about
the number of requests to each function and the mean latency, and pushes them to
the Prometheus service, which aggregates them. Based on the aggregated metrics, the
AlertManager notifies the Gateway when a function instance receives too many requests
in a given time window, and the Gateway decides to scale up or down the number of
deployed instances. Moreover, when a function remains idle (no incoming requests) for
a given period of time, the Gateway scales the function deployment to zero instances in
order to save capacity within the cluster.

A Function in the OpenFaaS system is defined as a handler process (written with
any programming language) which integrates with the already present Watchdog. The

13

2.2. Field Programmable Gate Array

Watchdog is a process which receives the requests forwarded by the Gateway and sends
them to the function handler in order to be processed. Handler process and Watchdog
are bundled together in a docker container which is then managed by the orchestrator
(Kubernetes in the case shown in Figure 2.2) under the Gateway conditions. Using this
system, the developer must only define the handler process function and some additional
metadata regarding it (e.g., the docker image name and additional details about the
deployment, such as annotations and secrets). Moreover, the OpenFaaS maintainers
offer a set of pre-made templates, which are skeletons for the handler function and the
docker image useful when developing a serverless function.

2.2 Field Programmable Gate Array

In this section we are going to provide a general overview about FPGAs and their recent
introduction in cloud environments. An FPGA is an Integrated Circuit (IC) that can
be programmed (possibly) infinite times after manufacture. The idea of reconfigurable
hardware does not refer only to FPGAs. In fact, many programmable technologies exis-
ted before that, such as Programmable Logic Devices (PLDs) and Programmable Logic
Arrays (PLAs).

The issue with these kind of architectures is that they can not be exploited for more
complex designs, as they present a fixed interconnection between components and provide
few levels of reconfigurable components. FPGAs instead provide complex reconfigurable
components and a fine-grained interconnection mechanism, allowing the designer to re-
configure them with complex circuits. This led to their utilization in various fields and
with different applications.

2.2.1 FPGA architecture

The basic structure of an FPGA can be seen in Figure 2.3. It is composed of:

Configurable Logic Block (CLB) The CLB is the basic configurable block inside an
FPGA, and provides different behaviours based on the given configuration. Intern-
ally, it is composed of logic cells containing a Look-up Table (LUT) (also called
ALM for Intel FPGA), a Full adder to perform simple arithmetic operations, and
a D-Type Flip-flop used to give sequential behaviour if needed. Each of these com-
ponents can be configured and activated differently inside the CLB to give it a
different configuration.

Switch Matrix (SM) The SM is the interconnection component of the FPGA, which
allows to connect the CLBs and other components in different ways. The SM is
a 2D matrix of interconnection signals that can be reconfigured at every crossing
point, which allows it to be configurable as well.

Input-Output Blocks (IOBs) The IOBs are necessary for the communication between
the FPGA and external components and circuits. Depending on the different FPGA

14

2.2. Field Programmable Gate Array

Digital Signal Processor Block RAMI/O Block Switch Matrix

Figure 2.3: FPGA structure (simplified) with CLBs, IOBs, BRAMs and DSPs.

model and board, the IOB pins are used for different purposes (e.g., memory, net-
work, video connections).

Digital Signal Processors (DSPs) DSPs are specialized component used to perform
mathematical and logic operations. They are included in the FPGA because they
allow to reduce the number of resources used for complex mathematical operations
(such as floating point multiplication and addition) with a higher performance than
CLBs.

Block RAMs (BRAMs) BRAMs are memory blocks directly instantiated on the FPGA
plane, along with CLBs and other components. They provide a faster memory
mechanism than external memories such as DDR because they are produced with
a faster logic and are on the same fabric, so they have a lower latency.

2.2.2 FPGA Reconfiguration and Tools

The components described in the previous section can be configured in order to implement
different circuits. In general, this makes FPGAs a turing-complete device, as in the
simplest case the FPGA can be configured to implement a soft-core processor which is
turing-complete.

15

2.2. Field Programmable Gate Array

The configuration by which the FPGA is programmed is called bitstream. The bit-
stream includes a list of bits that have to be written and stored on each component of
the FPGA (e.g., CLBs, DSPs, SMs) in order to reconfigure it. When a bitstream is
loaded onto the FPGA, a specialized component called Internal Configuration Access
Port (ICAP) distributes the various configuration bits to all the components of the chip.

Bitstreams are created through a process called synthesis, in which a Register Transfer
Level (RTL) representation of the circuit is transformed in the actual vendor-specific bit-
stream. To obtain the RTL representation, the hardware designer may use an Hardware
Description Language (HDL) such as VHDL, which allows to define every logic compon-
ent and behaviour. However, writing HDL may be a difficult and long task for complex
or large circuits. To make the process easier and less error-prone, and to allow designers
to create complex accelerators using FPGAs, vendors developed High Level Synthesis
(HLS) tools. An HLS tool allows a software or hardware developer to synthesize hard-
ware starting from high level languages (e.g., C++, Java) and using single pragmas and
tool-specific configurations. The HLS tool compiles the high level specification and, using
the given requirements and pragmas, translate the high level representation into a RTL
representation which can be synthesized. Examples of HLS tools are Vivado HLS and
SDAccel by Xilinx, and the FPGA OpenCL SDK from Intel (previously Altera OpenCL
SDK).

The advantage of HLS tools is the increase in productivity for the hardware designer,
as the tool abstracts detailed concepts like timing and pipelining, and allows the designer
to focus on the architecture and the flow of data inside the accelerator. Moreover, HLS
tools allows software developers to program FPGAs in addition to standard accelerators
such as CPUs and GPUs. On the other hand, the simplification of the design process
removes part of the designer freedom when creating complex or high-performance circuits,
as some low-level details about the underlying architecture and constraints are abstracted
away. Thus, for high-performance accelerators and strict timing-based circuits, hardware
designers still prefer HDL languages.

2.2.3 Usages of FPGAs

Given their reconfigurability and the possibility to create a specific architecture for a
given algorithm, FPGAs are widely used in many fields. The first advantage given by
FPGAs is that they can employ a much higher level of parallelism w.r.t CPUs. In fact,
while the execution of an algorithm on CPU is limited by the number of Functional Units
available and the parallel access to memory, an FPGA can be configured with a variable
number of units and memory blocks. For example, the design may decide to synthesize
multiple Arithmetic-Logic Units (ALUs) based on the amount of parallel operations
that should can be carried out for a given algorithm, or instantiate multiple BRAMs to
enforce parallel access to local or cached data. Also, the application-specific architecture
can employ multiple optimizations, like pipelining or loop unrolling which are different
from their software counterpart, as they can be directly instantiated in hardware. In

16

2.2. Field Programmable Gate Array

addition to the performance improvement, FPGAs work at lower frequencies than most
CPUs and GPUs, thus they enable low power designs.

Application Specific Integrated Circuits (ASICs) presents a challenge to FPGAs, as
they present all the FPGAs advantages but with increased performance and lower power
consumption. In fact an ASIC is a custom circuit which can run at higher frequencies
than its FPGA implementation, without the area and timing overheads. However, ASICs
can not be reconfigured. This means that if the implemented algorithm changes, the
ASIC must be re-designed and printed again. Also, for specific algorithms and with
small volumes, an ASIC might not be the perfect choice given the costs involved in its
creation.

Many fields benefit from the advantages just described (high performance, low energy
consumption and reconfigurability). An example is given by the telecommunications
sector, in which FPGAs are used in switches and routers across the network, as they allow
to update the switching behaviour without changing the network devices. Another sector
which employs FPGAs is finance, where they are used to accelerate High Performance
Trading algorithms working with low latencies. Finally, the last sectors which entered the
FPGA scenario are genomics and machine learning, which benefit from the acceleration
given by custom circuits and their reconfigurability as the algorithms keep changing.

2.2.4 FPGAs in Cloud Scenarios

In recent times, cloud providers started to include hardware accelerators in their cloud
offering to target high performance computing workloads. Examples of this are Machine
Learning, Genomics and Scientific computations, in which the algorithms require a high
level of parallelism to perform at an acceptable level. In this context, the first devices
to be offered in cloud scenarios have been GPUs, and later FPGAs. In particular, the
cloud FPGAs offer can be distinguished in two types.

The first type of FPGA usage in the cloud is as an underlying technology for specific
kinds of services. An example of this is Project Catapult [8] by Microsoft, in which FP-
GAs are used between the network interface and the server processor to offload certain
workloads and provide an acceleration plane in addition to the standard compute plane
of the cluster. The project has been employed to accelerate Machine Learning work-
loads with Project Brainwave [9], allowing Microsoft’s cloud provider (Azure) to offer
accelerated Machine Learning as a service.

FPGAs are also directly offered to the end user of the cloud service. The first cloud
provider offering FPGA instances has been Amazon Web Services (AWS), with their F1
instances [7]. F1 instances provide multiple development environments to design and
run FPGA-based applications, ranging from RTL design to HLS environments (such as
SDAccel by Xilinx, which uses OpenCL and C++ as specification languages). In order
to deploy an FPGA-based application, the developer needs to wrap its bitstream in an
Amazon FPGA Image (AFI), then upload it to the AWS system and deploy it into a
specific VM in order to reconfigure the connected FPGA. The FPGAs are connected on

17

2.3. Heterogeneous Computing and OpenCL

the host machine through PCI-Express, and a pass-through link is given to the VM for
the requested boards, providing full and private access to them. AWS allows to connect
multiple FPGA boards to a single VM, and to instantiate multiple VMs using the same
bitstream (connecting different FPGAs). The AFIs can also be sold or rented using
the AWS store, which represents a meeting point for hardware designers and companies
which need FPGA designs for their applications.

2.3 Heterogeneous Computing and OpenCL

In this context, multiple vendors (e.g. Intel, Nvidia, AMD) gathered to find a solution for
the heterogeneous programming challenge. OpenCL is an open and royalty-free standard
for heterogeneous parallel programming, which allows to greatly increase the speed and
responsiveness of applications thanks to the use of parallel co-processors. The OpenCL
standard defines a memory model and a programming paradigm which allows to run
algorithms written in the same language for different hardware platforms, tuning the
application parallelism based on the underlying architecture.

The computing model defines how to structure the application code in order to be
compliant with the OpenCL standard. In fact, the device is divided in Compute Units
(CUs), each subdivided in Processing Elements (PEs). The programming model defines
instead three different concepts: Kernel, Work-Group and Work-Item. A Kernel is the
function executed on the OpenCL device. It can be called multiple times and can run
on multiple CUs and PEs, depending on the underlying hardware. Each invocation of
the kernel is called a Work-Item. Finally Work-Items are grouped into Work-Groups to
allow a finer control over the topology of the kernel invocations. In fact, given the input
and output data, Work-Item and Work-Group can be used to define which portion of
the data that particular invocation must process. This allows to execute the kernel in
a parallel way (if the device allows it) without dependencies and concurrency issues. In
more complex cases, the programmer can enforce barriers and synchronization points in
order to better manage the concurrency between multiple Work-Items.

Kernels and Work Groups/Items are concepts related to device programming. In
order to run Kernels and exchange data from and to the device, the programmer must
also program the host application, which uses an underlying vendor-specific host library.
Multiple vendor libraries can be installed on the same system. To face this issue Khro-
nos [15], which is the maintainer of the OpenCL standard, released a framework called
Installable Client Driver (ICD Loader). The ICD loader allows multiple libraries to be
on the same system, as they are dynamically loaded based on the used device.

The OpenCL standard defines additional concepts related to the host code. In partic-
ular, a context represents multiple devices which are being controlled by the application.
It includes a program which consists of multiple kernel, and multiple command queues.
A command queue is a queue used to send commands to the device, such as reading and
writing from the device memory to the host memory and invoking kernels (giving also

18

2.3. Heterogeneous Computing and OpenCL

the number of Work-Items and groups). The command queue sends commands to the
device in-order, enforcing a order on the operations executed from that queue. However,
there is no synchronization between multiple queues, meaning that multiple operations
could be running at the same time on the device without any order between them (if
they are sent from different queues). Finally, the host can use Events to check the status
of operations and to allow non-blocking asynchronous operations and kernel invocations.

Host

Device
Global/Constant Memory

Host Memory

Work Group

Local Memory

Work Item

Private
Memory

Work Item

Private
Memory

Work Group

Local Memory

Work Item

Private
Memory

Work Item

Private
Memory

Figure 2.4: OpenCL standard memory hierarchy.

Regarding the OpenCL memory hierarchy, Figure 2.4 shows the different levels of
memory defined in the standard and how they are accessed. The first difference in the
memory model is between host and device memory, as they may be separated by a
communication mean. For example, the host may be a standard cpu-based machine with
a PCI-Express bus, while the device may be a GPU processor on a PCI-e board. In this
case, the host memory is the host DDR connected on the bus, while the device memory
is located on the GPU board. Inside the device, different memory locations are defined
based on their level. The outer level is the global memory, which is visible and accessible
to all the Work-Groups, items and kernels running on the device and can receive and
send buffers from the host memory. The Local Memory is instead shared within a single
Work-Group. Finally, the Private Memory is visible only by the single Work-Item. The
different memory levels inside the device may be mapped to different components and
locations. For example, on FPGAs the local memory is usually synthesized using local
BRAMs, while the private memory is located on fast registers, depending on its size.

19

2.4. Problem definition and goals

2.4 Problem definition and goals

In this section, we will present the problem addressed by this thesis work, based on the
background concepts presented in the previous sections. In particular, Section 2.4.1 de-
scribes the problem addressed by this work with the related challenges and opportunities,
while Section 2.4.2 provides the goals of the proposed system.

2.4.1 Problem definition

As described in the Section 2.2.4, FPGAs have been recently added to cloud computing
systems in order to speed-up computations and services. However, the way in which
FPGAs are offered is by adding them to the user VM by using a PCI-express pass-
through link (e.g. AWS F1 [7], Nimbix cloud [16]). This means that only one user’s
VM has access to the underlying FPGA at a given time.

If the service is experiencing a high load (in terms of incoming requests), then using
the entire FPGA is advantageous. However, when the number of requests is lower than
the maximum throughput attainable, the FPGA remains underutilized. Here for FPGA
utilization we mean time utilization, as in percentage of time in which the accelerator is
actually executing meaningful work. Moreover, the current usage of FPGAs in the cloud
is affected by underutilization in two different cases:

• Single user, multiple services with different accelerators

• Multiple users, multiple services with same accelerator

In the first case, if not all accelerators are used for 100% of the time, then the user
is paying more than the needed resources. In the second case, multiple FPGAs are
used even if the configured bitstream is the same. In general, the problem with current
cloud FPGAs offering resides in the non-linearity of the service, as the allocation of
devices to users follows a step function instead of a proportional line. Thus there is a
resource optimization opportunity for the cloud provider, which could provide the same
performances by using less physical devices by sharing them between multiple services
and users.

The opportunity can be seen even more in the context of serverless computing, as
no FPGA-based offer currently exists for serverless systems even if it represents a prom-
ising approach [10]. Also, given the automatic management of the underlying hardware
resources needed by the serverless model, the devices allocation can be abstracted away
from the user’s perspective. The challenges in this context are providing an optimal al-
location of resources given the devices utilization, and an isolation mechanism to allow
multiple users to share the same device in a secure way.

2.4.2 Goals

Given the concepts and challenges in the previous sections, the goal of this thesis work
consists in designing and developing a distributed system for FPGA sharing in cloud,

20

2.4. Problem definition and goals

and in particular, serverless scenarios. The system is called BlastFunction, and it aims
at meeting the following goals:

Multi-Tenancy The system should support multiple users deploying their FPGA-enabled
serverless functions without impacting other users services and provide isolation
between multiple applications using the same device.

Transparency The system should be transparent from the application point of view,
allowing the developer to use the same host code to access the shared device as if
it was a physical device directly connected to the application.

Scalability The system should not lose performances and allow to scale the number
of deployed functions in relation to the number of physical servers and devices
available.

Reconfiguration-aware and Accelerator-independent The system should allow the
function instances to reconfigure the shared device with any given bitstream, without
making assumptions about the used accelerator, and change the devices allocations
based on the new state introduced by the reconfiguration procedure.

Cloud orchestrator integration The system should integrate with an external cloud
orchestrator (e.g. Kubernetes) to perform the automatic allocation of the shared
device to the requesting function instances, and to migrate the instances when the
device configuration changes.

�

21

Chapter 3

State of the art

In this Chapter, we will present the analysis of the State of the Art related to this thesis
work, focusing on the integration of FPGAs in cloud computing environments. We first
provide a bird’s eye view of the analyzed context in Section 3.1, by enumerating different
classification criteria and the related works. Section 3.2 describes the works that share
an FPGA device on a single host in the system. Section 3.3 describes multi-node system
for FPGA sharing and allocation. Finally, Section 3.4 shows the works focused on FPGA
Pooling and the related scheduling and management techniques.

3.1 Works classification

In this section, we are going to give a classification of the described works by diffent
criteria.

The fist distinction among the analyzed works is the communication method used to
access the shared or virtualized device:

PCIe-Passthrough This is the lowest level method available, as it works by directly
connecting a single VM or container to the FPGA device. Notable works using this
kind of communcation level are the AWS EC2 platform [7] and the work in [17].

Paravirtualization In this case, the requesting application VM is connected to a host
device driver which virtualizes the access to the resources. This mechanism is used
by pvFPGA [18] and hCODE [19].

API Remoting This mechanisms is the most used in the analyzed state of the art [20,
21, 22, 23, 24, 25, 26], and it works by defining a custom API to remotely access the
device. It allows multiple applications to control the shared device and to perform
both space and time sharing. A special API Remoting technique is represented
by the work in [27], as in this case the system exposes a microservice for each
accelerator, and not a general API for the entire system.

Direct Network Access Used by Catapult [28] and in [29], this method works by ex-
posing the FPGA through its network interface, thus enabling a low-latency access
and network filtering and offloading techniques.

3.2. Single Node FPGA Sharing

We can make a second classification of the works analyzed, based on their sharing
mechanism. In particular, we distinguish between:

Space-Sharing [30, 29, 21, 19, 24, 25] This sharing mechanism employs FPGA vir-
tualiation through the use of Partial Dynamic Reconfiguration (PDR) or Overlays
in order to run multiple different accelerators on the same FPGA, which are used
by different applications. Space sharing allows to use the entire resources on the
device (in terms of logic blocks), but requires careful handling of the accelerators
in order to minimize the reconfiguration time and their interaction with shared
memory interfaces on the board.

Time-Sharing [18, 20, 28, 22, 23, 24, 31] Time-Sharing works by multiplexing mul-
tiple requests from different applications on the same accelerator in the FPGA
board (it can be coupled with Space-Sharing the board is split in multiple acceler-
ators of regions). In this case, the challenge is to efficiently schedule the incoming
requests in order to minimize the latency on the application side, and managing
the memory accesses in order to fit in the available I/O bandwidth between the
accelerator and the host system.

A final distinction between the described works is their batch or service based nature,
where the batch/service terms are related to how the FPGAs are seen by the system:

Batch System [18, 30, 29, 21, 19, 23, 26, 24, 32, 25] In a batch-based system, the
workloads (and the connection to the offered FPGA) are seen as limited in time.
Therefore, in this kind of system the scheduling and allocation algorithms are de-
cided based on the lifetime of each job. We include some “as-a-Service“ systems in
this category because, even if the authors considers the FPGA offering a service,
the devices are not continuously serving requests, but are working on batch jobs.

Service-Based [20, 17, 28, 22, 27] In Service-Based systems, the FPGAs are con-
tinuously working by receiving and processing requests from the system or the
application. Many pooling systems are included in this category because the device
are always online and the challenges are related to balancing the load in the sys-
tem and routing the requests to the offered devices. Moreover, works such as [27]
directly expose the underlying FPGA accelerator as a standalone service.

3.2 Single Node FPGA Sharing

The first approach used to integrate FPGAs in cloud computing scenarios is virtualiza-
tion, as it were (and still is) the most used technology to deploy applications and services.
Within this context, each FPGA board in the cluster is attached to a VM on the host
and can be accessed only by its applications or the applications on the same host.

An example of this kind of virtualization is pvFPGA [18]. In this work, the authors
propose a para-virtualization mechanism on top of the Xen Hypervisor to connect the

23

3.2. Single Node FPGA Sharing

FPGA board to the requesting VMs. The mechanism works at the device driver level,
instead of intercepting and redirecting API calls to the privileged domain or the host
user space. This means that the device is directly accessed by the VMs, and the system
provides a close-to-zero overhead. Moreover, pvFPGA allows multiple domains on the
same hypervisor to use the accelerator, by allocating a shared data pool to each unpriv-
ileged VM.

Another case of FPGA sharing on a single host through virtualization is the work
proposed by Asiatici et al. [33], which describes a method and runtime to design and map
accelerators onto FPGAs in cloud settings. In particular, the work proposes a runtime
composed of a high-level API to interact with the accelerator, an execution model which
support both hardware and software execution and a shared memory model able to isol-
ate the different applications using the same board. In this case, the FPGA board is
shared by using Partial Reconfiguration (PR) and a reconfiguration-aware controller and
a runtime manager running on a static region of the board (over a MicroBlaze soft-core).

A similar work to [21] is Vaishnav et al. [24], which introduces a system to perform
resource elastic FPGA virtualization. This approach allows multiple applications to pro-
gram an elastic portion of the FPGA concurrently. The system uses a Resource Manager
to schedule the different bitstreams reconfigured on the FPGA and the requests coming
from the host applications. The Resource Manager scheduler employs both space and
time multiplexing to decide which modules to shrink or grow based on a waiting queue
of kernels to be executed, along with metadata concerning the kernels and bitstreams.

In VineTalk [22], the authors propose a software layer between application software
and accelerator hardware which allows to share a single FPGA across multiple applica-
tions on the same host. The framework makes use of a shared memory communication
layer and a software controller to schedule the tasks coming from different applications.
Moreover, it allows hardware designers to easily incorporate new kernels by overloading
two functions in the framework, and the system is integrated with the SDAccel envir-
onment by Xilinx. The authors tested the framework on a financial use-case, showing
less than 4% overhead to the application execution time over a shared FPGA on a single
node. However, some limitations of the work include the lack of dynamic reconfiguration
to implement space-sharing, lack of transparency (the library presents a custom-made
API) and lack of a cluster-level orchestrator (the system is limited to one node at the
time of writing).

24

3.3. FPGA Sharing in cloud environments

3.3 FPGA Sharing in cloud environments

Many works deal with the sharing and allocation of FPGAs on a multi-node setting,
in which scheduling and allocation algorithms become more important, in addition to
networking and processing constraints.

The first work in this category is Byma et al. [30]. The work raises the level of abstrac-
tion w.r.t previous works, as the authors propose a hardware and software framework to
enable FPGAs virtualization in a cloud environment based on VMs and OpenStack. In
particular, the hardware framework allows to define multiple Virtual FPGA Resources
(VFRs) on every board. VFRs are then seen as separate resources by the OpenStack
layer. The user decides which bitstream to use for its VM, and the OpenStack controller
dialogates with a node-level Agent to program the allocated VFR and connect it to the
booted VM. The system is evaluated by deploying different load balancer implementa-
tions to test the different between VM and FPGA, showing promising results.

In hCODE [19], the authors describe an open-source system to simplify the design,
management and deployment of FPGA accelerators in cloud environments. The nov-
elties of the proposed system include the addition of a resource-tracking mechanism, a
cluster-level accelerator scheduler and a task execution controller, along with a central
repository to store the different bitstreams and configurations.

A different method to share FPGAs in a large scale system is shown by Weerasinghe
et al. [29], which decouples FPGAs from CPUs by offering them as standalone devices
inside the cluster. The authors implement a network-attached FPGA architecture con-
sisting of a user logic part and a network service and management layers. In particular,
the user logic part allows to perform partial reconfiguration, thus sharing the FPGA
board among multiple users. The management layer exposes the device to the cloud
platform and allows to configure it remotely when requested. By implementing an ad-
ditional service to manage the offered FPGAs, the proposed system is able to integrate
with an OpenStack cluster used by the authors.

Catapult [28] represents another case of FPGA integration with cloud-scale archi-
tectures. In this work, Microsoft proposes an FPGA layer between the servers and the
interconnection infrastructure. This is done by deploying an FPGA board on every server
in the datacenter and use it as a network-offloading device. The FPGAs in the system
are able to filter packets and workloads coming from the network plane before they are
received by the server for processing. Moreover, workloads can be directly executed on
the reconfigurable device. This allows the system to perform both network and service
acceleration, as the device is able to execute accelerated tasks coming from the locally
attached server or from any other host in the network. The authors finally describe a
Hardware-as-a-Service (HaaS) model in which jobs can be sent and processed by FPGAs
remotely and with a Resource Manager (RM).

25

3.4. FPGA Pooling Mechanisms

Orellana et al. propose two works regarding the inclusion of FPGAs in heterogeneous
private clouds. The first work [34] describes the architecture of the system, which allows
two usage models: the first model is an Infrastructure as a Service (IaaS) model in which
users require the exclusive access to an FPGA board, while the second model presents a
Software as a Service (SaaS) system in which the user indicates an accelerated service and
its Quality of Service (QoS) parameters (e.g. latency). Based on the requested model,
service and parameters, the authors propose different allocation strategies and scheduling
decisions for the SaaS model, evaluating it on a real testbed (based on OpenNebula). In
the second work [17] the authors extend the previously proposed system with a multilevel
cloud scheduling framework. In addition, they propose multiple node-level FPGA-aware
scheduling strategies based on multiobjective metric aimed at providing QoS support and
incrementing the number of requests serviced with their Service Level Objectives (SLOs)
fulfilled.

A final work regarding the integration of FPGAs in VM-based cloud systems is Tes-
fatsion et al. [32]. The authors propose a system for efficient resource management
in heterogeneous clouds including FPGA accelerators. The system employs an energy-
aware technique that uses the applications performance and deadlines to allocate FPGAs
to the most energy demanding applications. Once the system has allocated an FPGA
to a VM, it optimizes the energy consumption while keeping the required performance
of the remaining applications by employing frequency adaptation and CPU scaling. The
authors measured a 32% improvement in the performance-energy ratio of data-intensive
applications, thanks to the effectiveness of the allocation of heterogeneous resources in a
cluster.

3.4 FPGA Pooling Mechanisms

In addition to FPGA sharing (in single or multi-node settings), some works in the State
Of Art deal with the concept of resource pooling, in which multiple devices are seen as a
single device by the application. In this way, the applications are not aware of the nature
(in terms of size and number) of the underlying devices, and a more scalable service can
be created without explicit care by the application developer.

The work by Pogliani et al. [23] proposes a dynamic resource manager to automatic-
ally assign reconfigurable devices (FPGA-based Dataflow Engines (DFEs)) to jobs with
the goal of meeting application level QoS, in terms of deadline or throughput. The
proposed system is composed by a Job controller which computes the individual job re-
quests and constraints, and a centralized Resource Broker which computes the allocation
based on the given request, constraints and available DFEs. Two system implements two
scheduling policies: an Earliest Deadline First policy for offline scheduling, and an online
Throughput-based policy based on the number of tasks performed by the job. Moreover,

26

3.4. FPGA Pooling Mechanisms

the system presents a group of DFEs as a single virtualized DFE backed by a pool of
one or more physical devices, thus implementing a pooling technique.

A similar work is represented by FPGA Groups [20] by Iordache et al. FPGA Groups
is a system to aggregate multiple reconfigurable components (DFEs as in the previous
work) with the same configuration as a single accelerator. Each group defines a different
accelerator, and the kernels run on accelerators of the same group through time-sharing.
The proposed system also performs autoscaling of the groups by first monitoring each
device task queue, then estimating the runtime performance of the current kernels, and
finally resizing the queues accordingly. As in [23], each group of devices is seen as a single
virtualized accelerator by the application, so it implements resources pooling. However,
the group configuration is static (the board-accelerator mapping is done at the beginning
of the jobs allocation) and is not integrated with the current orchestration systems (even
though it includes an orchestrator).

The work in Zhu et al. [25] proposes an FPGA Pooling system for offering FPGAs
to the requesting VMs in the cloud. The system works by allocating an FPGA portion
only when requested by a VM and releasing it afterwards, thus sharing the FPGA and
reducing waste. Moreover, all FPGA accelerators are managed as a single resource pool
shared among all VMs. To efficiently allocate the different reconfigurable portions, the
authors implemented a central scheduler which employs two different algorithms (and
a mix of the two). The first is a resource-aware algorithm, which categorizes the jobs
based on their location and tries to avoid the creation of “hot-spots“ inside the system,
in terms of FPGA-available nodes and network connections. The second algorithm is
workload-aware, as it employs multiple priority queues and allocates the workloads in
their reverse order of size (following a Shortest Job First (SJF) policy). By conducting
an extensive evaluation on a small testbed and a large-scale simulation, the authors con-
clude that the system is able to improve the job completion time by up to 7×, and 95%
tail job completion time by 4×.

Another work related to FPGA pooling and scheduling is Zhao et al. [26], in which
the authors describe scheduling policies to “minimize the make-span of a given batch of
requests“ employing FPGAs. In particular, they consider two major resource bottlenecks,
computation and network, and propose different strategies to assign job requests to the
FPGA pool. For the compute-intensive workloads, the algorithm runs a linear program-
ming model and splits the workload accordingly, as the network bandwidth needed to
perform the split is negligible. For the network-intensive case instead the algorithm de-
termine (through a linear programming model) the maximum bandwidth available to each
job portion, and allocate the jobs based on the processing nodes ingress bandwidth. Fi-
nally, a third algorithm is proposed which considers both transmission and computation.
The authors evaluated the system on a real testbed and in a simulator to simulate differ-

27

3.5. Closing remarks

ent workload and network patterns, showing a decreased make-span w.r.t SJF scheduling.

Finally, Okija et al. [27] proposes a high-performance architecture for FPGA-as-a-
Microservice (FaaM) to allow decoupling between accelerators and microservices. The
architecture is composed of Workers to manage each distinct accelerator. In addition,
Service Containers perform load balancing and decouple the FPGA execution from the
access to the service. The Accelerator Manager is responsible for data movement and
controlling the kernels’ execution on the single FPGA, while a node-level scheduler (acting
with a first come first serve basis) schedules the different threads on the accelerator.
The authors evaluate the system by deploying a compression service, showing minimum
overhead w.r.t the native execution (thanks to the use of nonblocking buffer tranfers) and
higher performance than a CPU implementation. However, the system is only compatible
with JVM-based frameworks and lacks a cluster-level orchestrator (at the time of writing).

3.5 Closing remarks

In this chapter we presented the State of the Art which is of interest for this thesis work.
In particular, we first showed a classification of the works considered, distinguishing them
based on the communication method used to access the device, the sharing mechanism
implemented and their batch or service nature.

We then analyzed three different approaches to the problem addressed. First, we
described the single-node approach to sharing an FPGA device, based on virtualization
and shared memory. Then, we presented approaches to share multiple FPGAs in a cloud
scenario using distributed services and schedulers. Finally, we listed the latest works
offering FPGA pooling, in which the devices are shared among multiple applications on
multiple nodes and are abstracted as a single device.

�

28

Chapter 4

System Design

In this chapter we are going to describe the overall design of the proposed system for
FPGA sharing in cloud environments. We will also provide a brief description of each
component included in the system.

Section 4.1 provides an high-level overview of the proposed design. The chapter
then describes each component and its working principles. In particular, Section 4.2
describes the Remote OpenCL Library, Section 4.3 shows the Device Manager component
and explains the basic FPGA sharing mechanism. Section 4.4 gives an overview of the
Accelerators Registry component.

4.1 BlastFunction Overview

BlastFunction is an FPGA sharing system for the acceleration of microservices and server-
less applications in cloud environments. The system allows multiple applications to ex-
ecute kernels on the same FPGA concurrently and without changing the underlying host
code, providing a easy integration with existing applications. In addition, the system
allocates the available devices as required by the applications based on runtime metrics
collected by the system itself. This allocation is performed to utilize the accelerators at
their maximum performance and capacity (in terms of time-slots in which it is executing
tasks), without impacting on the applications performance.

For these reasons, the main goals of BlastFunction are:

1. To provide a sharing mechanism for FPGA accelerators, allowing concurrent access
to the board from different applications,

2. To automatically manage the scheduling and allocation of devices and application
containers in the cluster based on performance metrics,

3. To provide an easy integration of the system with existing applications and server-
less and container-based systems, without changing the host or the hardware code
provided by the application developer.

The goals previously defined are tackled by the combination of multiple components
that we designed to create the proposed system. The components are the Remote Library,

4.1. BlastFunction Overview

Node

Vendor Driver

FPGA

Runtime

Function Instance

Remote
Library

Function
Code

Device
Manager

Cloud
Orchestrator

Accelerator
Registry

Gateway

Figure 4.1: High Level Overview of BlastFunction components and their connections

the Device Manager and the Accelerators Registry, as shown in Figure 4.1.
The Remote OpenCL Library is the component of the system which allows the client

application (or serverless function) to integrate with BlastFunction. The library is a
custom OpenCL implementation which abstracts the use of the remote device access
protocol and the communication to the Accelerators Registry and the Device Managers
from the host code. In this way, the application can request and access an FPGA device
as if it was on the host system (or VM), without caring about the underlying remote and
shared access mechanisms.

The Device Manager is the component which is connected to each underlying FPGA
in the system and provides the time-sharing mechanism. It exposes a service which is used
to access the device functionalities remotely and without crossing memory boundaries on
the system, in this way providing an isolated and secured access from multiple application

30

4.2. Remote OpenCL Library

containers.
Finally, the Accelerators Registry is the central controller of the system, which tackles

the goal of allocating the available devices efficiently using runtime performance metrics.
It does so by tracking the device utilization metrics from the Device Managers and
performing an online device allocation algorithm which takes also care of reconfiguring
the devices at runtime. Finally, it intercepts the deployment and removal of applications
inside the cluster to integrate them with the system and perform the allocation algorithm.

The system integrates with other external components in order to reach its goals.
In particular, the Cloud Orchestrator depicted in Figure 4.1 (Kubernetes in our case) is
used by the Accelerators Registry to control the cluster resources and their allocation to
specific nodes. The Gateway is instead the serverless system’s endpoint, which forwards
external requests to the function instances and performs the autoscaling of functions.

4.2 Remote OpenCL Library

The Remote OpenCL Library is a custom implementation of an OpenCL host library,
developed to integrate the applications with our system and to isolate them from the
hardware accelerator execution. In particular, the Remote Library implements most of
the methods used to control an FPGA accelerator. In addition, it can be easily integrated
with the applications by overwriting the already installed library, or by updating the
system OpenCL configuration to recognize it. If the application is linked dynamically,
this allows to integrate it with our infrastructure without changing any line of code.
Otherwise, the library can be directly used even with statically compiled applications.

The Remote Library implements a central router component, which acts as a singleton
and it is responsible for keeping a list of the available platforms. In particular, it gets the
address of the selected Device Manager (or managers if multiple addresses are provided
as an environment variable) and creates a connection to it through gRPC. Also, for state-
changing operations (any function call which does not just get information) the remote
library calls the registration method on the manager to ensure that the connection is
established and that the manager has reserved the resources for the client. After having
checked the registration, the proper method is called based on the upper-level OpenCL
call by the application.

The system allows for both synchronous/blocking requests to the remote runtime and
asynchronous/non-blocking requests. Both the synchronous and asynchronous flows rely
on asynchronous events. An event in the system is composed by a set of subsequent
asynchronous calls to the device manager service, a state machine to control the steps
that each event must follow and an OpenCL status for the event which is updated
while the event is processed. In this way, the remote library supports event polling
(e.g. clWaitForEvents, clGetEventInfo) like the standard OpenCL specification. We will
explain the asynchronous flow by following Figure 4.2, which shows the main components
of the Remote Library.

31

4.2. Remote OpenCL Library

Application
Library

Interface

Async Event
Object

Remote Library

event

Events
Thread Completion Queue

tag pointer

Synchronous Flow

Asynchronous Flow

1

Endpoint

2

3

45
6

7

Figure 4.2: OpenCL Remote Library Architecture, highlighting the steps performed in the asynchron-
ous flow.

When the Remote library receives an asynchronous OpenCL call from the application
(step 1), it creates an event (step 2) and performs a first asynchronous request through
the network stack (step 3). The request encapsulates a tag, which is the pointer to
the newly created event. Whenever the device manager responds (step 4), the network
runtime pushes the tag into the completion queue of the client. Then, the connection
thread pulls the tag and retrieves the corresponding event (step 5). The thread calls the
event state machine, which performs the needed operations and updates its state and the
OpenCL event status (step 6). Finally, the application is notified when the event changes
the OpenCL status (step 7). For example, to perform the clEnqueueReadBuffer function,
the event’s state machine contains 4 states, as shown in Figure 4.3. The INIT state sends
the call metadata (buffer size, buffer id, offset); the FIRST step waits for the command
to be enqueued by the manager; the BUFFER step actually sends the buffer data when
the manager is available, and the COMPLETE step signals the call completion.

INIT BUFFER COMPLETEFIRST

send metadata send chunkwait enqueued signal completion

Figure 4.3: Example state machine for the read buffer operation

32

4.3. Device Manager

Service
Implementation FPGA

Device Manager

Worker
ThreadTasks Queue

Current
Tasks

Program Board / Get platform Infos

Notify Execution

1 2
3

4

5

Endpoint

Figure 4.4: Device Manager Architecture, with the command queue methods flow highlighted

4.3 Device Manager

The Device Manager is the BlastFunction component responsible for the control and
management of a single board inside the system. In particular, by exposing a service to
access the FPGA concurrently, it’s the basic block of the sharing mechanism presented
in this work.

Figure 4.4 shows the key features and components inside the Device Manager, along
with the flow followed by operations which are executed on the FPGA. The first compon-
ent of the manager is the service endpoint, which receives all the method calls performed
by the clients. There are two kind of methods exposed by the service: context and
information methods and command queue methods.

The context and information methods are executed synchronously as they don’t in-
volve execution on the FPGA. This group of requests includes the creation (on the client
side) of kernels, platforms and contexts, the request of informations related to the device
and the buffer management requests. Regarding the creation of kernels and buffers man-
agement, the Device Manager controls each client resources pool separately, in order
to enforce isolation between multiple clients. The board reconfiguration request repres-
ents an exception in this group, as it blocks the execution of other operations to repro-
gram the board with the given bitstream. We will describe in detail the reconfiguration
while showing the Accelerators Registry in Section 4.4. All the other methods (platform,
device, program and arguments information gathering, release of objects) don’t involve
the FPGA directly and can be executed synchronously.

The other group of requests is represented by command-queue requests, which are
composed by operations that must be executed in the order decided by the client ap-
plication and might require to use the FPGA exclusively. An example is the kernel
execution request, which might be interleaved with buffers reads and writes on one or
multiple queues. For this kind of requests, if any operation is received or executed in the

33

4.4. Accelerators Registry

wrong order by the Device Manager, the results of the execution will change, and this
would break the system consistency from the application point of view.

To ensure the in-order execution of command-queue requests, the Device Manager
employs multi-operation tasks. We define a task as the atomic unit of execution of
BlastFunction, composed of a sequence of operations that should executed atomically
on the FPGA. Whenever the Device Manager receives a command-queue request (step
1), the requested operations are added to the task related to that particular client (step
2). After that, if the client sends a flush command (either by calling a blocking method
or clFinish/Flush/EnqueueBarrier), the current task is sent to the central queue of the
manager (step 3). This mechanism avoids conflicts between different clients and in the
future could be used to lower the resource usage on the board (e.g. memory buffers can
be deallocated while not used or when the data has to be overwritten by the next task).
Once the task arrives to the central queue of the manager, a worker thread pulls and
executes them on the FPGA in a First-In-First-Out order (step 4). Each operation in
the task is linked with a OpenCL event and when the operation is completed the event
is notified to the caller (step 5). In this way, the client is notified punctually, even if the
operations are executed in groups.

4.4 Accelerators Registry

Devices
Service

Accelerators Registry

Dev. Mgr.
Endpoint

Applications
Endpoint

Functions
Service

Allocator

Reconfiguration
Strategy

Metrics
Gatherer

Figure 4.5: Accelerators Registry internal architecture

This section describes the Accelerators Registry component, which role is to gather
information about the entire FPGA sharing system and to perform the admission control
of the apps and the allocation of the devices to the deployed applications. We first give
an overview of the Registry features and component. Then, Section 4.4.1 describes the
devices allocation algorithm. Finally, we explain the reconfiguration flow coordinated by
the Registry in Section 4.4.2.

The Accelerators Registry is the master component of the system, as it is the "bridge"

34

4.4. Accelerators Registry

between the applications and the devices managed by BlastFunction. In fact, when an
application is deployed, the Remote Library integrated with the application code asks
to the Registry which devices to connect. In a similar way, whenever a Device Manager
starts working, it notifies the Registry about the managed device. In this way, the
Registry is able to track all the informations about the system which are required to
perform an optimal allocation of devices to applications and function instances.

In particular, the features of the Accelerators Registry are:

Devices and Functions Registration The registry allows Device Managers and Ap-
plications (either containerized or implemented as serverless functions) to register
their presence and information. Moreover, it is notified of their disconnection from
the system to remove their information.

Devices Allocation Every time a new function or application is deployed in the system,
the Registry allocates a variable number of devices to it (based on the application
requirements). The allocation algorithm is explained in detail in Section 4.4.1.

Reconfiguration Validation Every time a Device Manager is asked to reconfigure its
device, the Registry is notified and is able to validate the action or to block it. The
reconfiguration flow is described in Section 4.4.2.

Metrics Aggregation The Registry tracks multiple runtime metrics about the system
periodically, in order to enhance the allocation and reconfiguration mechanisms
based on the current resources utilization and load.

We offer each functionality using different components inside the registry, as shown
in Figure 4.5. The Accelerators Registry offers two main endpoints which external com-
ponents can access: one endpoint is device-related, while the other is application-related.
The two endpoints are backed by two different services which are responsible for the
domain-specific data about the managed resources. The Devices Service collects and
manage informations about the devices into the system. In particular, the informations
stored about the devices are:

• Device identifier in the system,

• Device OpenCL Platform, Profile and Board Vendor,

• Position, in terms of cluster-level node name and Device Manager address,

• Current configured accelerator (name and bitstream hash),

• Function instances connected to it (references).

The Functions Service contains instead the informations about the different deploy-
ments and instances in the BlastFunction system. In particular, for deployment we mean
the general specification of the application which is deployed in the system. An instance

35

4.4. Accelerators Registry

is instead the single container or function replica of the application. Given that the
allocation algorithm works with instance-level resolution, the Registry stores both the
general specification of an application and the single instance information. The inform-
ation stored in the Registry about the function specifications and instances are:

• Application/Deployment identifier in the system,

• Requested Device Query (e.g. board name or vendor-based filter, accelerator
name/hash),

• Number of devices per instance,

• For each instance:

– Instance container hostname,

– Instance position in the cluster (node hostname),

– List of assigned devices.

In general, the information contained in the Device and Function service components
are updated from two channels: the external endpoints offered by the Registry and the
Allocator component. When starting, both Device Managers and Function Instances
register to the Registry through the endpoint, and remove their entry when they are
disconnecting from the system (e.g. failing or re-deployed). The Allocator component
also updates them when operating, such as on every new allocation.

The Accelerators Registry also tracks runtime metrics about the system, offering the
Metrics Aggregation functionality through theMetrics Gatherer component. The Metrics
Gatherer component connects to an external time-series database (e.g. Prometheus, as
will be further described in Chapter 5) and fetches different metrics based on the queries
coded into the component itself. When fetched, the resulting metrics are embedded in
the device-related informations, and used by the Allocator component to enhance the
resulting mapping between function instances and devices.

4.4.1 Allocation algorithm

The Devices Allocation functionality of the Accelerators Registry allows the system to
automatically decide the how to connect Function Instances (each one requesting a device
with a given configuration) and Device Managers (each one offering a time-shared device).
To offer this functionality, the Registry performs an online allocation algorithm, meaning
that it is not performed statically at startup, but it is performed whenever a new function
instance is deployed. Also, the allocation depends on the runtime system configuration,
in terms of already allocated accelerators, applications requests and runtime performance
and utilization metrics gathered by the Registry.

The allocation mechanism tries to meet the following requirements:

36

4.4. Accelerators Registry

• Optimize devices utilization in terms of time slices executed on each device by
multiple services

• Avoid over-provisioning of the available resources, in order to not increase the
services latencies

• Take into account the presence of multiple accelerators and bitstream (and allow
the application to insert a new bitstream into the system if needed)

Algorithm 1 Devices allocation algorithm
1: procedure Allocate(instance, devices,metrics_order,metrics_filters)
2: devices← filterby_compatibility(devices, instance.devicequery)

3: devices← filterby_metrics(devices,metrics_filters)

4: devices← orderby_metrics_and_accelerator(devices,metrics_order)

5:

6: i← 0

7: if not_compatible(devices(i)) then
8: while not_redistributable(devices(i)) do
9: i← i+ 1

10:

11: if i < len(devices) then
12: chosen_device← devices(i)

13: else
14: raise error ”device not found”

15:

16: instance.devices← {chosen_device}
17: if instance.node == ”” then
18: instance.node← chosen_device.node

19: return

The allocation mechanism pseudocode is shown in Algorithm 1. Whenever the al-
location procedure is called by the Accelerators Registry, it takes as input the function
instance which must be matched, all the available devices in the system and a list of
metrics to be taken into account. First, the procedure filters the devices based on their
compatibility with the application requests. In particular, a device is compatible with
the function instance if it complies with the function’s device query. The Device Query
embeds conditions about the device characteristics, such as vendor, OpenCL platform
and profile, and the current configured bitstream or accelerator (either in form of hash or
name). The most important parts of the Device Query from the allocation point of view
are the vendor, platform and accelerator informations: vendor and platform are required
to check if the board can be reconfigured by the application, while the accelerator hash is
useful to check if the device has already been configured with the application-specific bit-

37

4.4. Accelerators Registry

stream, thus not requiring a new reconfiguration for sharing it. The first filtering phase
is performed based on the board and vendor information to remove from the allocation
list the devices which can not be used by the application because they use a different
underlying hardware.

Then, the devices are filtered again, this time based on the gathered or computed
metrics. This is an additional functionality which is useful whenever the system designer
(which can update the registry configuration) may want to keep some metrics in a spe-
cified range. For example, the utilization may be kept between 0% and 90%, in order to
avoid overprovisioning of the device, or to take into account a possible variance in the
device load by the sharing function instances. In general, if no device remains after any
filtering phase, the Registry raises an error which is sent to the caller (application or
orchestrator), and the function instance will not be connected to any device.

After all the filtering phases, the devices are sorted by metrics and by accelerator
compatibility. The metrics priority can be chosen by the system maintainer, based on
the system and applications SLA The accelerator compatibility refers to checking the
current configured bitstream against the Device Query bitstream to see if the chosen
device should be reconfigured in case of allocation. By employing this two ordering
behaviors, the Registry can ensure an optimal and consistent allocation. For example,
the default metrics sequence used by the Registry is {Utilization,Occupation}, meaning
that the devices are first ordered by accelerators compatibility (default and first ordering),
then time utilization and finally by basic occupation. In this way, the first compatible
device with the lowest load (in terms of time-slices of execution) and occupation (number
of instances connected) will be allocated to the instance.

It might happen that no compatible accelerator is found after ordering, meaning that
no device in the cluster is configured with the required bitstream or has not been yet
reconfigured. The algorithm notices this condition when the first device in the sorted
list is not compatible (as the devices are sorted by compatibility first), then it tries
to find a suitable device for reconfiguration. Starting from the sorted list of devices
already found (the non compatible ones), the allocator checks which devices workloads
can be redistributed to other compatible devices. In particular, the algorithm applies
the following check to every device in the sorted list:

∃D ∈ devices |
∑

d∈devices,
d.hash=D.hash,

d 6=D

(100%− d.utilization) ≤ D.utilization

If at least one device meets this requirement, then the device is flagged for reconfiguration
and the registry allocates it to the requesting function instance. The process is approx-
imated and takes into account only the total load for the reconfigured device, instead
of the per-instance utilization. Thus, some reallocated function instances may not find
enough time-slices on the new chosen device. However, in this case the system should
react by scaling the function to other devices to solve the issue.

38

4.4. Accelerators Registry

4.4.2 Reconfiguration Flow

The main feature of BlastFunction is that is leverages sharing FPGAs resources to ac-
celerate cloud-native workloads. Using FPGAs in a distributed system poses different
challenges w.r.t using conventional hardware such as CPUs. In fact, while CPUs provide a
generic architecture able to process different operations and workloads without changing
the underlying hardware, FPGAs must be reconfigured based on the target application,
meaning that different workloads require different workload-specific accelerators and ar-
chitectures.

The process of reconfiguring an FPGA board takes time to perform, and this time
may impact on the execution of multiple applications. In addition, the new configured
accelerator might not be compatible with the current applications using the device, which
would need to be terminated or migrated to a different device in order to continue
using the previous accelerator. In the context of this work, the system should then try
to reconfigure the devices in an optimal way, meaning that reconfiguration should be
performed the least number of times possible.

BlastFunction tackles these issues by relying on two mechanisms. The first mechan-
ism has already been described in the previous Section (4.4.1), which deals with allocating
already configured FPGAs to applications which require the same accelerator, or alloc-
ating them to different accelerators when the utilization or load of the current devices
is too high. In this section, we describe the process performed by the components of
the system when a function instance is connected to a device, which may be already
configured with the required accelerator, or may need to be reconfigured.

Figure 4.6 describes the reconfiguration process flow from a system perspective,
showing the different components involved and the messages that should be exchanged
while processing the device reconfiguration. The first component involved is the Remote
OpenCL library integrated with the function instance application code. When the ap-
plication requests to reconfigure or program the remote device, the library sends a first
request message to the Device Manager associated with the remote shared device. Fig-
ure 4.7 shows the flow of actions and choices made by the Device Manager regarding the
reconfiguration flow. First, the Device Manager receives hash or any unique identifier
of the required accelerator, then it checks if the reconfiguration can be performed. In
particular, it first checks whether the device is already configured with the same accel-
erator bitstream or not. In case of a positive result, the device is already configured
with the proper accelerator and there is no need for a reconfiguration. In the other case,
the process requires to check whether the reconfiguration is valid in terms of the system
configuration. This means that the Device Manager notifies the Accelerators Registry of
the possible reconfiguration requested by the function instance. This notification is sent
whether or not the reconfiguration is needed, in order to update the state of the system.
As soon as it receives a notification, the Registry checks whether the function instance
has been connected to the properly allocated device or not. If the allocation is verified
(i.e. the device has actually been allocated to the requesting function instance), then

39

4.4. Accelerators Registry

Device
Manager

Accelerators
RegistryRemote	Library

validation	response

send	hash

notify

return

send	bitstream

return

[response = send bitstream]

alt

Figure 4.6: High-level view of the reconfiguration flow

the reconfiguration is valid and the Registry returns a positive response to the Device
Manager. In addition, the Registry changes the system state by updating the allocation
of already existing function instances connected to the device. In fact, if the new accel-
erator is different from the previous one, the current instances may not be compatible
with it, so they must be migrated to a different device. This is performed by recreating
the underlying application containers and allocating them to a different device with the
proper configured accelerator. The process will be discussed in the next chapter as it is
dependent on the cluster system implementation. After receiving the response from the
Accelerators Registry, the Device Manager responds to the requesting function instance
according to its current state. In particular, if the device is already configured with the
requested accelerator it will stop the process; otherwise, it will ask the function instance
to send the actual accelerator bitstream in order to reconfigure the device. The Remote
Library receives the response from the Device Manager and acts accordingly: if the pro-
cess ends it returns the control to the application host code (either with a success of
failure code), otherwise it sends the accelerator bitstream. After receiving the bitstream
the Device Manager needs to perform accessory operations in order to reset the status
of the shared device: in particular, it flushes the tasks queue and stops receiving new
operations regarding the previous accelerators from the Function Instances which are still
connected (and will be stopped to perform their migration to a different device). Finally,
the Device Manager performs the device reconfiguration and sends a final response to
the Remote Library, which returns control to the application code.

40

4.4. Accelerators Registry

Receive requests
from function

instance

Notify Registry

Receive response
from Registry

not valid

validreconf.
request

valid

KO
Block new operations

from instances

Flush task queue

Reconfigure Device

OK

not needed

needed

reconfiguration
needed

OK

Figure 4.7: Reconfiguration Flow view from the Device Manager perspective

41

4.5. Closing remarks

4.5 Closing remarks

In this chapter we described the design of the proposed system to tackle the FPGA shar-
ing problem described in Section 2.4. BlastFunction is designed to offer a transparent and
scalable system to share FPGAs among multiple tenant, providing a vendor-independent
implementation.

The design includes 3 main components: a Device Manager for each device, a Remote
OpenCL Library embedded in each Function Instance, and a central Accelerator Registry.
The Device Manager provides the time-sharing mechanism to offer a single device to mul-
tiple instances, by receiving atomic tasks and executing them independently. The Remote
OpenCL Library is a custom implementation of the OpenCL standard which allows the
Function Instances to communicate with the system transparently and allows both syn-
chronous and asynchronous operations. Finally, the Accelerators Registry gathers all the
informations about the FPGA cluster from the Device Managers, receives the allocation
requests from Function Instances and performs the allocation and admission control of
them. The Registry employs an online allocation algorithm to match every Instance with
the corresponding shared device, and takes care of managing the devices reconfiguration
in accordance with the current state of the cluster.

�

42

Chapter 5

Implementation

In this chapter, we will show the implementation details of the proposed system, along
with the description of the use cases integrated with it and its deployment. Section 5.1
explains the communication layer used by the BlastFunction system components. Sec-
tion 5.2.2 shows the integrations that the Accelerators Registry employs with external
services, and gives an overview of the final deployment of our system. Finally, Section 5.3
describes how we implemented the test case serverless functions, along with their pack-
aging and deployment using OpenFaaS.

5.1 Communication layer implementation

In this section we describe the main communication mechanism employed by BlastFunc-
tion, highlighting the main features of the framework and protocol used. To implement
a communication layer for our FPGA sharing system, some requirements should be met:

Low latency The protocol and framework employed should have a low overhead and
provide low latency communication, in order to not impact on the execution time
of the application.

Customizability / Extensibility The communication method should be customizable
and extensible, in order to easily upgrade the system without losing compatibility
with previous versions.

Standard interface On top of the other requirements, the framework should offer a
standard interface for multiple languages, in order to not restrict it to only the
system implementation languages (which in our case are C++ and Go).

We first show the gRPC-based communication system used for the majority of the
operations. Then, we describe an improved mechanism to allow a fast buffer movement
between the components, using shared memory segments.

5.1.1 gRPC-based communication system

Given the previously listed requirements, we found gRPC [35] to be a good fit for our
system. gRPC is an open-source and high-performance Remote Procedure Call (RPC)

5.1. Communication layer implementation

1 syntax = "proto 3" ;
2 package openc l ;
3

4 s e r v i c e OpenCL {
5

6 rpc r e g i s t e rC l i e n t (ClientRegMsg) r e tu rn s (ClientRegResp) ;
7 rpc un r e g i s t e rC l i e n t (ClientRegMsg) r e tu rn s (ClientRegResp) ;
8

9 rpc ge tP la t fo rmIn fo (Pl In foRequest) r e tu rn s (PlInfoResponse) ;
10 rpc ge tDev i c e In fo (DevInfoRequest) r e tu rn s (DevInfoResponse) ;
11

12 rpc programWithHash (AccHash) r e tu rn s (AccHashResponse) ;
13 rpc programWithBinary (stream AccBinary) r e tu rn s (AccResponse) ;
14

15 rpc c r e a t eBu f f e r (Buf ferRequest) r e tu rn s (Buf ferResponse) ;
16 rpc wr i t eBu f f e r (stream WriteBuffRequest) r e tu rn s (stream OCLResponse) ;
17 rpc readBuf f e r (ReadBufRequest) r e tu rn s (stream ReadBufResponse) ;
18 rpc releaseMemObject (ReleaseMemRequest) r e tu rn s (ReleaseMemResponse) ;
19

20 rpc c r ea teKerne l (KernelRequest) r e tu rn s (OCLResponse) ;
21 rpc getNumArgs (NumArgsRequest) r e tu rn s (NumArgsResponse) ;
22 rpc runKernel (RunKernelRequest) r e tu rn s (stream RunKernelResponse) ;
23

24 rpc flushCommandQueue (FlushRequest) r e tu rn s (FlushResponse) ;
25

26 }

Listing 5.1: Main gRPC definitions for the communication between Remote Library and Device
Manager

framework. The main characteristic of gRPC is that the protocol interface (in terms of
RPCs and messages) can be defined using Protocol Buffers [36]. When the definition is
given to the protobuf and grpc compilers, it generates a stub and a service implementa-
tion. The stub is a software component (generated with one of the languages supported
such as Java, C/C++, Golang etc.) which can be easily integrated with an application
to allow it to access the gRPC service. The service implementation sits instead on the
server-side, and provides an interface that can be then implemented by the developer.

Listing 5.1 shows the protobuf definition of the OpenCL service, which the Remote
Library and Device Manager use. Each RPC is defined by indicating an input and output
message type (e.g. ClientRegMsg and ClientRegResp for the registerClient procedure)
and the name of the method, which will be used by both the stub and the service
interface. We also indicated some messages in the RPCs interface as stream. A stream
allows the indicated part (client, server or both) to send and receive multiple messages
during the execution of the RPC. This behaviour is useful when a procedure requires to
send multiple data chunks, or when a more complex protocol (e.g. with multiple steps

44

5.1. Communication layer implementation

1 message DataChunk {
2 oneof payload {
3 int32 t o t a l S i z e = 1 ;
4 bytes chunk = 2 ;
5 }
6 }
7

8 message KernelArg {
9 uint32 index = 1 ;

10 uint32 s i z e = 2 ;
11 bool isMem = 3 ;
12 oneof arg_type {
13 int32 mem_id = 4 ;
14 bytes arg = 5 ;
15 }
16 }
17

18 message BufferHeader {
19 s t r i n g c l i en t_ id = 1 ;
20 uint32 queue_idx = 2 ;
21 int32 mem_id = 3 ;
22 int32 o f f s e t = 4 ;
23 bool b lock ing = 5 ;
24 }
25

26 message WriteBufRequest {
27 oneof payload {
28 BufferHeader header = 1 ;
29 DataChunk chunk = 2 ;
30 }
31 }
32

33 message RunKernelRequest {
34 s t r i n g c l i en t_ id = 1 ;
35 uint32 queue_idx = 2 ;
36 s t r i n g ke rne l = 3 ;
37 int32 dimensions = 4 ;
38 repeated uint32 o f f s e t = 5 ;
39 repeated uint32 g l oba l = 6 ;
40 repeated uint32 l o c a l = 7 ;
41 repeated KernelArg karg = 8 ;
42 }

Listing 5.2: Example message definitions used in the Remote Library - Device Manager communication

45

5.1. Communication layer implementation

and messages) is required. For example, the buffers-related RPCs use streaming messages
to send the buffers to read/write.

Regarding the messages definition, Listing 5.2 shows some example messages that
are exchanged in the system. A message is defined by its fields, which are numbered in
order to keep the protocol retrocompatible (fields can be added, but it is better to not
remove them afterwards from the definition). The protobuf compiler generates classes
and methods based on the given definition, allowing a fast mechanism for serialization and
deserialization. In addition to standard fields, protobuf allows to declare oneof conditions
and repeated fields. A oneof definition (such as in the DataChunk message) allows only
one field to be used at a time. This can be used in combination with streaming messages
in order to enforce a given protocol. In our system, the oneof keyword is widely used,
for example in the DataChunk and WriteBufRequest definitions. The repeated keyword
indicates that a field may have multiple copies inside the same message. This is useful
when sending a small array of elements (e.g. kernel arguments in the RunKernelRequest
message). Finally, message definitions can be nested in order to create complex messages.
We can see this feature in use in the WriteBufRequest and RunKernelRequest definitions.

Another gRPC characteristic that we leverage is the possibility to choose between
synchronous and asynchronous calls, both for standard and streaming RPCs. When
a synchronous RPC is performed, the underlying framework takes care of all the syn-
chronization and thread patterns, without the intervention of the developer. In the
asynchronous mode, instead, the developer must explicitly manage the events created
by the framework. As already shown in the methodology chapter while describing the
OpenCL Remote Library (Section 4.2), we make use of a completion queue which is part
of the gRPC framework. Our implementation employs tags to recognize and process the
incoming messages. A tag is a pointer to a specific event created in our system which then
triggers an action using an embedded state machine. The asynchronous mode is needed
on the client size to be OpenCL-compliant, as the original standard allows asynchronous
operations. On the Device Manager side instead the service is implemented only in a
synchronous way, in order to let gRPC manage the underlying thread pools.

5.1.2 Shared Memory mechanism for buffers movement

Even if it is a high performance communication framework, gRPC presents performance
limitations related to the underlying serialization of Protobuffers. In fact, using the loop-
back interface (or the node-level docker virtual network) we noticed a throughput limit
of roughly 1.3GB/s. This limit is confirmed by public benchmarking results for Protobuf
shown in [37]. Moreover, the gRPC implementation of buffer-passing operations per-
forms 3 transmissions of the same elements. For example, the write operation performs
a first copy from the application buffer to gRPC messages, then a second copy to send
the messages over the network to the Device Manager. The Device Manager copies the
received messages to a local buffer, and finally sends the data to the device. All these
copies represent a huge overhead in terms of operation latency.

46

5.1. Communication layer implementation

In order to improve the performances, we decided to implement a shared memory
mechanism in our communication system. The shared memory feature works in addition
to the network (gRPC-based) mechanism for buffer passing, but only if the Function
instance and the Device Manager are on the same node. By creating and using shared
buffers instead of sending them through the network, we are able to avoid most of the
copies, performing only one copy for each transfer (instead of 3 copies of the default
mechanism).

The mechanism works by creating shared buffers through the use of the open and
mmap POSIX primitives. When the client requests the creation of a buffer (through
the clCreateBuffer function), the Remote Library checks if the server allows shared
buffers and asks the Device Manager to create one. Then, the Device Manager creates
a file in a directory shared with the application. Usually, the system tries to share
the host’s /dev/shm directory or one of its subdirectories among the applications and
the Device Manager, as the /dev/shm mount point uses a memory-based volume. This
allows to avoid the hard disk access overhead when manipulating the shared buffers.
After creating the file, the Device Manager resizes it to the desired dimension (given by
the requesting application) and uses mmap to map the file to a memory address, which
will be used on the Device Manager side. The mmap function works by creating a virtual
mapping between the file and the application, and allows different access modes for the
mapped space. In particular, we use the MAP_SHARED flag to allow buffer visibility to the
client application. Moreover, the mapping includes different flags (e.g. PROT_READ and
PROT_WRITE) to protect the buffer from write or read operations, which is useful when
mimicking the OpenCL flags for buffer access.

On the application side, the Remote Library receives a response from the Device
Manager, containing the buffer id and the path of the created file (relative from the
shared mount path). Then, the Remote Library tries to open and map the shared
file and associates the mapped address to the created buffer, in order to use it in the
buffer passing methods. When the applications requests a read or write operation (e.g.
clEnqueueReadBuffer, clEnqueueWriteBuffer), the Remote Library starts the process
in the same way as the gRPC-based mechanism, using asynchronous calls and an event-
based state machine, using gRPC messages to advance the state of the operations. The
difference when using shared memory is that the buffer passing method does not use
gRPC messages to send/receive the buffer, but instantly uses the shared buffer in a
single operation (performing a memcpy). The Device Manager also directly uses the shared
buffer, passing it to the device-side OpenCL methods. The gRPC flow is maintained to
synchronize the Remote Library and Device Manager through the use of ACKs, in order
to avoid collision on the shared buffer.

The proposed mechanism also provides automatic deallocation procedures in case of
failure to avoid memory leaks which could affect the host system. For example, if the
client application can not open the shared file, or there is an error in the clCreateBuffer
operation, the Device Manager will immediately delete the shared file and use the gRPC-

47

5.2. System integration and Deployment

based mechanism.
Moreover, the shared memory mechanism is subject to compatibility of the host

Operating System (OS), as it must allow the use of mmap. The Registry is responsible
for providing the shared memory mount point and access permissions to both the Device
Manager and the serverless instances. In addition, the Registry sets the environment
variables related to the mechanism, activating it or not based on the host environment
(more on this in Section 5.2.1).

Finally, we take into consideration the possibility of zero-copy buffer passing between
the applications and the Device Manager. In fact, directly using the shared buffer for
the client application would allow to avoid any copy apart from the host to device trans-
mission, as every update to the buffer would be instantly visible to the Device Manager.
Unfortunately, to allocate the shared buffer the client application would need to use a
custom function which is not part of the OpenCL standard, breaking the transparency
goal of our project. Moreover, the synchronization behaviour would presents a com-
patibility issue in the case of gRPC-based communication, as synchronizing the buffer
transparently would introduce a high overhead (in terms of hash and differences compu-
tation, along with hidden buffer transfers over the network). For this reasons, we decided
to not introduce a zero-copy mechanism using a custom allocation for the client buffers.
In any case, we plan to introduce this feature as a custom extension of the library in
future works.

5.2 System integration and Deployment

In this section, we show how the proposed system integrates with an existing cloud
orchestrator (in this case, Kubernetes) to enable an easy and effortless deployment of
applications using shared FPGAs.

5.2.1 Registry integrations

As already explained in Section 4.4, the Accelerators Registry is the main component of
BlastFunction, responsible for the devices allocation and admission control of the client
applications and function instances. Even if the Registry features should be agnostic in
terms of cloud providers, we decided to provide a first implementation integrated with
Kubernetes as a proof of concept. Moreover, we use Prometheus as our metrics timeseries
database. Here we describe how the Registry communicates with the Kubernetes master
API and a Prometheus deployment in order to offer its services.

Kubernetes WebHooks

The first feature requiring the Registry to integrate with Kubernetes is the registration
and patching of function instances. When a function is deployed, we would like to know
if it requires an accelerator, and in that case register it and assign it a unique iden-

48

5.2. System integration and Deployment

1 ap iVers ion : apps/v1
2 kind: Deployment
3 metadata:
4 name: example−deployment−b l f
5 annotat ions :
6 b l a s t f un c t i o n . i o /vendor: " a l t e r a "
7 b l a s t f un c t i o n . i o / dev i ce : "de5a_net_e1"
8 spec :
9 template:

10 metadata:
11 l a b e l s :
12 app: example
13 spec :
14 con ta i n e r s :
15 − name: example−b l f−app l i c a t i o n
16 image: r e g i s t r y . b l a s t f un c t i o n . i o /exampleapp:v1

Listing 5.3: Example deployment highlighting the BlastFunction-related annotations

tifier. This can be done by using WebHooks. A Web Hook is a way for a service to
notify a client application when a new event has occurred on the service. The concept
of WebHook extends outside the context of Kubernetes to all web services, providing a
callback mechanism using the HTTP protocol. For what concerns our work, we distin-
guish between two kind of WebHooks in Kubernetes, both related to resources admission
control: MutatingAdmissionWebHook and ValidatingAdmissionWebHook. When a user
or an application tries to create a new resource in the Kubernetes cluster, the master
first calls all the associated Mutating Webhooks. Each application listening for this kind
of callback can then send patches to the created resource in order to modify it before
the creation. After all mutations have been performed to the resource definition, the
Kubernetes master validate it through the Validation WebHook. In this way, multiple
actors inside the system can decide which resources to admit and how to update them.

The Accelerators Registry listen a deployment and pod-level MutatingAdmissionWeb-
Hook inside the cluster to intercept the creation and removal of deployments (one for
each function/application) and pods (for each function instance) and, if needed, update
them. In particular, when a new deployment or pod creation request is intercepted, the
Registry checks for some BlastFunction-related annotations inside the specification. The
checked annotations are in the form blastfunction.io/keyword, with keyword being
accelerator, acceleratorhash, device or also vendor, as shown in Listing 5.3. If any of
the listed annotations is found, the Registry aggregates them as a unique DeviceQuery,
which the Allocator uses to find the matching device. If a device is found, then the
Registry issues a patch for the deployment. Listing 5.4 shows an example patch for a
deployment, while Listing 5.5 shows a patch for a pod resource. The patch adds en-
vironment variables on the first container of the pod, in order for the Remote OpenCL

49

5.2. System integration and Deployment

1 [
2 {
3 "op" : "add" ,
4 "path" : "/ spec / template / spec / con ta i n e r s /0/env/−" ,
5 " value " : {
6 "name" : "ROOT_CLIENT_ID" ,
7 " value " : " c l i e n t 0"
8 }
9 } ,

10 {
11 "op" : "add" ,
12 "path" : "/ spec / template / spec / con ta i n e r s /0/env/−" ,
13 " value " : {
14 "name" : "REGISTRY_ADDRESS" ,
15 " value " : " b l f r e g i s t r y . b l a s t f un c t i o n . svc : 50051"
16 }
17 }
18]

Listing 5.4: Example Mutation patch issued by the Registry for a Deployment resource

1 [
2 {
3 "op" : "add" ,
4 "path" : "/ spec / con ta i n e r s /0/env/−" ,
5 " value " : {
6 "name" : "CLIENT_INSTANCE_ID" ,
7 " value " : " i n s t ance 0"
8 }
9 } ,

10 {
11 "op" : "add" ,
12 "path" : "/ spec / nodeSe l e c to r " ,
13 " value " : {
14 " kubernetes . i o /hostname" : " b l fnode 2"
15 }
16 }
17]

Listing 5.5: Example Mutation patch issued by the Registry for a Pod resource

50

5.2. System integration and Deployment

library to work. We do not add a volume for the actual library and assume that the
container already includes it, but it would be a possible way to automatically load the
Remote Library into application containers. The REGISTRY_ADDRESS variable indicates
to the Remote Library how to connect to the Registry itself. The ROOT_CLIENT_ID and
CLIENT_INSTANCE_ID are instead the unique identifiers of the function (and function in-
stance) inside BlastFunction, and are then used by the Remote Library to authenticate
within the system. Moreover, the patch mechanism is used to schedule a function in-
stance on the specific node where the allocated device resides. This is done by adding a
nodeSelector field to the pod specification (and not the deployment’s), as shown in the
example patch.

Kubernetes API integration

In addition to patching newly created instances, the Registry directly employs the Kuber-
netes API to manage existing function instance Pods. In particular, as already outlined
in Section 4.4.2, whenever a device is reconfigured the Registry must reschedule the
connected clients. Rescheduling of pods is not natively available in Kubernetes, so we
implemented it in the Registry by employing a Golang client library for Kubernetes.
When the registry receives a reconfiguration request for an already configured device,
it checks whether the already connected instances would be compatible with the new
accelerator. All the non-compatible instances are flagged for rescheduling, which is then
performed by removing the associated Pods. When a Pod deletion request is sent to
Kubernetes, it automatically creates a new Pod with the same specification before re-
moving the previous one. This is done to maintain the service continuity and keep the
application up. The Registry patches the new Pod in order to allocate a compatible
device to it, considering also that the previous device has changed. In this way, the func-
tion instances can be migrated to a different device than the reconfigured one, without
losing service uptime.

Prometheus integration

In order to allocate devices to function instances, the Accelerators Registry integrates
with a central Prometheus server to gather system and devices-related metrics. Prometh-
eus is an open-source time series processing and collection server, which works by collect-
ing multiple metrics from endpoints inside the cluster. In particular, by “scraping“ the
endpoints inside the system for a specific Hypertext Transfer Protocol (HTTP) endpoint
(usually /metrics), Prometheus collects the partial data collection (e.g. current sum of
a variable or histogram) and stores every data series inside its database. Afterwards, ap-
plications and services can access and process the collected metrics by using queries in a
specific language called PromQL. In BlastFunction, each Device Manager exposes a met-
rics endpoint, showing latencies, allocations and other information related to the under-
lying device and manager. The Registry periodically collects some of the exposed metrics
by querying the central Prometheus server, and includes them in the allocator algorithm

51

5.2. System integration and Deployment

OpenFaaS

FunctionsBlastFunction

Monitoring

Device
Manager

Function Instance

Remote
Library

Function
Handler

OpenCL
Commands

Accelerator
Registry

Gateway

AlertManager

Metrics / AlertsCommands / Requests

De
vic

e
m

et
ric

s

Operations and Data

API c
alls

Device metrics

Cluster
metrics

Alerts

Admin commands

API metrics

HTTP requests

Alerts

Cluster metrics

Admin
commands

API calls

Figure 5.1: Overview of the system Deployment in a Kubernetes cluster, showing the main connections
between Services and components.

(as described in Section 4.4.1). For example, the main metric used by the Allocator is
called FPGA utilization, and it is computed with a prometheus query for each device in
the system: rate(fpga_task_latency_sum{app=’device-manager’}[1m]). This query
instructs Prometheus to return a rate of change for the fpga_task_latency_sum variable
in the last minute. In this way, the Registry obtains for each device the percentage of
time (over the last minute) in which tasks were executed on the FPGA, giving a rough
estimate of the device load.

5.2.2 Complete system Deployment

In this Section we describe the Deployment of BlastFunction and the related services and
components inside a Kubernetes cluster.

Figure 5.1 shows an overview of the Deployments inside the system. The system is
divided into four main namespaces, each one representing a different sub-system based
on its functionalities.

The first Namespace is for monitoring. It contains the Prometheus and Grafana

52

5.2. System integration and Deployment

deployments, which are used to pull metrics from all other components of the cluster
and to query/show them. A standard Kubernetes Deployment is used to deploy both
Prometheus and Grafana. Each component has an attached Volume in order to keep the
metrics even if the Pods fail and to have a stateful behaviour. Moreover, each deployment
is backed by a Service which exposes the application on all the nodes in the cluster. As
shown in Figure 5.1 the Prometheus service receives metrics from multiple components:
each Device Manager, the OpenFaaS gateway and the Kubernetes cluster itself, through
the use of a node-exporter Pod running on every node. Moreover, Prometheus forwards
metrics and alerts to other services, namely the Accelerators Registry and the OpenFaaS
AlertManager.

Regarding the OpenFaaS namespace, we show only the Gateway and AlertManager
deployments as they are its main components. Other deployments not shown are FaaS-
idler (which scales function instances to zero when no requests are received), a streaming
server and a QueueWorker for asyncronous requests. The OpenFaaS gateway is deployed
either with one or multiple replicas depending on the load of the system, and it receives
and forwards requests coming from the related service to the interested Function Instance.
Moreover, it sends metrics related to the received requests to the Prometheus service.
The AlertManager instead receives alerts from Prometheus and forwards them to the
Gateway. Alerts are threshold related to particular queries, which are used by OpenFaaS
to perform autoscaling decisions. Finally, the Gateway interacts with the Kubernetes
API to create and update Deployments and Pods related to serverless functions.

The BlastFunction Namespace contains the Accelerators Registry and all the deployed
Device Managers. Device Managers are deployed using a DaemonSet specification, which
instantiates a Pod on every node. We label each node based on the installed FPGA board
to deploy the proper Device Manager. In order to give the Manager informations about
the node on which it is deployed, we add parametric values to the DaemonSet yaml
file (e.g. spec.nodeName for the node and status.podIP for the Manager address).
Moreover, we attach to the Manager container the /dev directory with privileged ac-
cess to the FPGA device files, in order to give it access to the board. Regarding the
interactions with the other parts of the system, each Device Manager pushes metrics
to the Prometheus service and receives commands and data from the Registry and the
connected Function Instances (through the Remote Library). The Registry instead pulls
metrics from Prometheus, receives commands and requests from Device Managers and
Function Instances, and interacts with the Kubernetes API in both ways, as explained
in Section 5.2.1: it receives admission requests and sends rescheduling commands.

The last created Namespace is the Function’s one (called blastfunction-fn), which
acts as a simple container of Pods for the Function Instances created by the OpenFaaS
gateway and patched/rescheduled by the Accelerators Registry. We created a separate
Namespace in order to isolate the managed Pods and to give special permissions re-
garding them to the Accelerators Registry, OpenFaaS and Prometheus, which scans the
namespace in case any of the Function would have a metrics endpoint exposed. To give

53

5.3. Use cases implementation

specific permissions we employ Service Accounts and Roles and RoleBinding. Each Role
has associated operations and resources on which the operations can be performed. A role
can then be bind to a given namespace or the entire cluster (for example, Prometheus has
a cluster-wide list permission for Pods). Finally, a Service Account encapsulates mul-
tiple roles and can be associated with any Deployment or Service inside the cluster. For
OpenFaaS and the Registry, we created two accounts and roles with similar permission,
which are get, list, watch, create, delete, update of Pods and Deployments in-
side the functions namespace.

5.3 Use cases implementation

In this section we describe the kernels we selected to evaluate our system. We decided
to find already existing hardware designs and host applications in the state of the art to
demonstrate the transparency of our system w.r.t both the FPGA vendor and the host
code. Moreover, we explain how each kernel was integrated in a serverless function and
packaged using OpenFaaS.

5.3.1 Spector: Sobel and Matrix Multiplication

The first set of accelerators we found and integrated in the test applications belongs to
the work of Gautier et al. [38] called Spector. Spector is an open-source OpenCL FPGA
benchmark suite. It contains various tunable designs for the acceleration of algorithms
through FPGAs. Moreover, the authors synthesized more than 8000 designs for the
available kernels to provide a complete Design Space Exploration (DSE). This work is
useful as it targets the same kind of FPGA board used in our evaluation phase and it
provides an OpenCL implementation (both from the accelerator and the host point of
view) of the applications, which allowed us to integrate the proposed designs easily in
our system.

The fist design considered is the one performing a sobel edge detection algorithm
(also called sobel operator). The algorithm works by applying a 3× 3 kernel to an input
image. This allows to compute an approximation of the derivatives for each point in
the picture, then added together to compute the gradient magnitude. The magnitude
indicates the level of “change“ of the current pixel w.r.t neighboring pixels, such that if
the value is high the pixel is considered as inside an edge. The authors in Spector employ
blocking and internal SIMD operations to improve the algorithm performance on FPGA.
In particular, a block of the input picture is first loaded into the kernel local memory
(on BRAMs), then a sliding window is computed over the block. The parallelism is
enhanced by employing multiple operators inside a compute unit, and by synthesizing
multiple compute units on the board. By analyzing the DSE output data for this kernel,
we ended up synthesizing a design using 32×8 blocks, 4×1 window with no SIMD applied
and a single compute unit. In fact, the combination of this parameters result in the best
performance in terms of latency, as the kernel is less memory-intensive. Moreover, the

54

5.3. Use cases implementation

lack of SIMD operations is balanced by the presence of a larger block and window, which
are processed in parallel.

The second design we considered was a Matrix-Multiplication kernel, as it represents
one of the most notable benchmarks for computing acceleration. In particular, the design
given in Spector is based on the Altera OpenCL example. It allows to multiply two
squared matrices of any size (with a maximum side length given by the resources available
in the accelerator) by employing tiling, meaning that the resulting matrix is divided into
blocks, each computed individually. Moreover, the design contains several knobs to tune
the design to the specific board and FPGA used to obtain maximum performance. The
knobs are the block dimension, the subdimension width and height (how many blocks are
processed in a work-unit), number of compute units, and SIMD and unrolling parameters
(enabling and factor). In our case, we analyzed the DSE results from [38] and found the
best design with 1 compute unit, 8 work items for each unit, and a completely unrolled
block of 16× 16 elements.

5.3.2 PipeCNN: Neural Network acceleration

Global Memory

MemRD Conv Pooling MemWR LRN

Channel/PipeNDRange Kernel Single-threaded Kernel

Figure 5.2: Top-level architecture of PipeCNN, showing the OpenCL kernels and their connection

Another work we used as a use case for our system is PipeCNN [39], which is an
open-source implementation of an FPGA accelerator for Convolutional Neural Networks
(CNNs). The accelerator allows to accelerate any kind of CNN using a set of pre-
made OpenCL kernels for convolution/fully connected, pooling and normalization layers,
which can be optimized with various parameters and options. Figure 5.2 shows the
overall design structure of the accelerator, which is composed of multiple OpenCL kernels
connected through channels. A channel is a connector between two kernels which allows
to send and receive data in streaming fashion, meaning that the sender and receiver

55

5.3. Use cases implementation

exchange at most one data word for each clock cycle on the same channel. In this
way, multiple cascaded kernels can run in parallel without using global memory, as each
kernel reads from the previous one and writes to the next one. The two datamover
kernels (MemRead and MemWrite) transfer feature and weight data from/to the global
memory to the other kernels with high-throughput data streams. Moreover, cascading
the Convolutional and Pooling kernels with the datamovers allow to reduce the inter-
layer data which needs to be stored on global memory. The Convolution kernel is able
to execute both convolutional and Fully Connected layers by employing a vectorized 3D
Multiply-Accumulate (MAC) operation on multiple CUs (each one fed by a different
channel coming from the MemRead datamover). In addition to convolution, other two
kernels are implemented by the authors (Pooling and Linear Response Normalization
(LRN)) in order to execute most of the network components on the FPGA board.

When the application wants to process an input image, it takes the network configur-
ation in terms of number of layers and number of iterations to be executed for each layer.
Then, the accelerator is called iteratively, meaning that each layer needs multiple runs
to be processed. Moreover, all the kernels related to the current portion of the network
are executed concurrently. For example, if the network definition requires convolution
and pooling, the accelerator will enable 4 kernels: MemRead, Convolution, Pooling and
MemRead. This represents a good test case for our system, as it uses multiple com-
mand queues in parallel and requires careful handling to not stall the entire accelerator.
Moreover, given that the design is general enough to run multiple network at the same
time, it represents a useful starting point to evaluate the benefits of accelerator sharing
between multiple applications.

5.3.3 Integration and serverless implementation

Each of the previously described kernels was integrated into an OpenFaaS serverless
function. In particular, in OpenFaaS a function can be created from any containerized
application, by integrating it (and adding to the container) with the Function Watchdog.
The Watchdog is a small Golang-based HTTP server which forwards external requests to
the handler application, either by using the standard input/output (in the first version
of the Watchdog) or HTTP forwarding. In this way, any application can be integrated
with the serverless system easily and without custom APIs. Moreover, OpenFaaS provide
pre-made templates to use for implementing a serverless function. A template includes
the Watchdog and the basic code for the handler application (e.g. a small web server
without a specific implementation) that can be filled by the developer.

In our case, we decided to use the Dockerfile template to implement from scratch
our functions. In particular, starting from a standard CentOS containers we added our
Remote Library in place of the already present OpenCL library. Then, we developed a
basic HTTP handler application using the C++ REST framework called Pistache [40].
Finally, we packaged the application in a Docker Container by modifying the Dockerfile
given by the OpenFaaS template, which adds the Watchdog binary and set up the related

56

5.3. Use cases implementation

1 prov ide r :
2 name: openfaas
3 gateway: http:// b l a s t f un c t i o n . i o
4 f un c t i on s :
5 s obe l :
6 lang: d o c k e r f i l e
7 handler : . / s obe l
8 image: r e g i s t r y . g i t l a b . com/ b l a s t f un c t i o n / sobe l : l a t e s t
9 l a b e l s :

10 com . openfaas . s c a l e . min: 3
11 com . openfaas . s c a l e .max: 12
12 com . openfaas . s c a l e . f a c t o r : 10
13 annotat ions :
14 b l a s t f un c t i o n . i o / dev i ce : "de5a_net_e1"
15 s e c r e t s :
16 − g i t l ab−r e g i s t r y

Listing 5.6: Example stack.yaml configuration file for the sobel serverless function

environment variables.
In order to deploy a serverless function in a OpenFaaS-enabled cluster, the developer

needs to create a yaml configuration file for that function. Listing 5.6 shows an example
yaml file for the sobel function. The yaml file may contain multiple functions, and for each
function it defines which container to use, the handler application and other variables.
For example, the com.openfaas.scale.* labels are used by the OpenFaaS autoscaling
mechanism. The function is first deployed with the min number of replicas. When the
incoming requests rate surpasses a threshold, the function is progressively scaled by a
factor ratio until it reaches the max number of instances. We also added other variables
to the function definition file, such as the BlastFunction-related annotations and the
name of the secret to access the docker registry.

When the function is deployed, it can be accessed afterwards through the OpenFaaS
gateway address. For example, for the given sobel function definition the gateway is loc-
ated at http://blastfunction.io, thus the function can be called by sending an HTTP
request of any kind at http://blastfunction.io/function/sobel. This URL acts as
the root address for the function, so if http://blastfunction.io/function/sobel/apply
is called, the function handler will see /apply as the requested URL, as the Watchdog
will strip the address portion related to the OpenFaaS gateway.

�

57

Chapter 6

Experimental results

In this chapter we will present and discuss the results of the experiments conducted to
validate the proposed system design and implementation. In particular, we tested two
different scenarios using the applications described in Section 5.3. Section 6.1 describe
the first scenario, in which we measure the single-node overhead introduced by using our
Remote OpenCL Library. Section 6.2 illustrates and the second scenario, which tests the
system scalability in terms of accelerators usage in a small-scale experimental setup.

6.1 System Overhead Evaluation

In this section we describe and show the results of our first experiments concerning the
system overhead. The goal of this first experimental campaign is to verify whether the
proposed FPGA sharing system is introducing a limited overhead w.r.t a native execu-
tion. Considering a serverless scenario, the native execution represents the theoretical
maximum performance that our system should achieve. Evaluating the system overhead
in a controlled scenario allows to get a first measure of how BlastFunction performs,
which we also use to produce estimates and assumptions for the other experiments.

6.1.1 Experimental Setup

To test our system, we run our experiments on a single node. The node is equipped
with a single socket 3.40GHz Intel® Core™ i7-6700 CPU, with 8 total threads (4 cores)
and 32GB of DDR4 RAM. The node is connected to the local network through a 1Gb/s
Ethernet link. Moreover, we installed a Terasic DE5a-Net FPGA board on the node.
The board includes an Intel®Arria 10 GX FPGA (1150K logic elements) along with
8GB RAM over 2 DDR2 SODIMM sockets and a PCI-Express x8 connector.

We run each test by deploying a single instance of the Device Manager using a Docker
Container connected to the underlying FPGA board. Moreover, the tested applications
were deployed on a different Docker Container on the same node, in order to have a
fair evaluation between our system and the native execution mode (local virtual network
stack + Shared Memory and PCI Express for our system, PCI Express only for the native
FPGA execution).

6.1. System Overhead Evaluation

0B 250 MB 500 MB 750 MB 1.0 GB 1.2 GB 1.5 GB 1.8 GB 2.0 GB
Total Buffers sent/received size (Bytes)

0

200

400

600

800

1000

1200

1400

R
TT

(m
s)

Native
BlastFunction
BlastFunction shm

Figure 6.1: Latency overhead for read and write operations at increasing input and output sizes.

6.1.2 Overhead Evaluation Results

We tested the three accelerators described in Section 5.3 (Sobel, MM and VGG using
PipeCNN) by copying each kernel specific host code in a test application written in C++
and linked dynamically with our Remote OpenCL Library. Moreover, we implemented a
simple host application which reads and writes to/from the device in order to evaluate the
communication overhead, without taking into account the kernel execution time. Each
test application was deployed as a Docker container on the same node as the Device
Manager.

To test the latency overhead, we run each test by increasing the input and output
size to see the impact of the Remote Library serialization and communication mechanism
(both gRPC-based and shared memory based) and the Device Manager queue. We tested
each different size step 40 times to aggregate the results and get a better estimate of the
average latency. Moreover, the accelerator calls are spaced by 200 milliseconds each, in
order to get an independent measure of the execution without the interference given by
multiple subsequent calls. Unfortunately, we were not able to change the input size to
the CNN accelerator, as the implemented network has a fixed-size input.

We first discuss the results regarding the pure Read/Write performance. Figure 6.1
shows the Round-Trip Time (RTT) for a write-read operation (first write, then read
synchronously). We tested the operation with an increasing buffer size, from 1KB to
2GB. To evaluate the performances, we measured the RTT latency for the native im-
plementation and our system, testing both the gRPC-based and shared memory buffer

59

6.1. System Overhead Evaluation

0B 2 MB 5 MB 7 MB 10 MB 12 MB 15 MB
Total Buffers sent/received size (Bytes)

0

5

10

15

20

25

R
TT

(m
s)

Native
BlastFunction
BlastFunction shm

Figure 6.2: Latency overhead for Sobel operator accelerator at increasing input and output sizes.

passing mechanisms. In the gRPC-based implementation (denoted by the "BlastFunc-
tion" label in Figure 6.1), the total latency is more than four times the native execution
time. For example, at 2GBs of transferred buffer size we measured a 1027ms overhead,
which corresponds to 314% of the native execution time. This overhead is given by the
serialization limit imposed by Protobuf and because the communication system performs
3 more copies of the same buffer (as explained in Section 5.1.2). The Shared Memory
system (denoted by the "BlastFunction shm" label) removes the limitations of gRPC-
based transfers, avoiding multiple copies of the same buffer. In fact, the results show an
improvement in terms of latency and overhead, which is composed only of the memcpy
latency (limited only by the system memory buffer). The maximum overhead measured
is of 155ms when transferring 2GBs, which represents 47.55% of the native execution
latency (which is 326.89ms with the same input sizes). Most of the overhead is com-
posed by the memory copy operation, while a smaller part (∼ 2ms for every input size)
is given by the gRPC control signals, which are used even in the shared memory system.

The previous results show only the read and write overheads, which for the majority
of accelerators are negligible w.r.t the kernel execution time, depending on the kernel
memory/compute intensive nature. We now describe the results regarding different ac-
celerators execution.

Figure 6.2 shows the latency measurements for the Sobel operator. In the native
scenario, the kernel shows a linear behaviour based on the input size, as expected from
a linear filter implementation. The Native execution time starts from 0.27ms with a
10× 10 image (800 bytes sent and received), up to 14.53ms for the largest image (1920×

60

6.1. System Overhead Evaluation

0B 25 MB 50 MB 75 MB 100 MB 125 MB 150 MB 175 MB 200 MB
Total Buffers sent/received size (Bytes)

0

500

1000

1500

2000

2500

3000

3500

R
TT

(m
s)

Native
BlastFunction
BlastFunction shm

Figure 6.3: Latency overhead for MM accelerator at increasing input and output sizes (the "Native"
latency line overlaps with the "BlastFunction shm" line).

1080 pixels, with a total read/write transfer of ∼ 8MB). We can see that, in the
BlastFunction results (both gRPC and shared memory) there is an initial 2ms overhead
even at lower input sizes, given by the BlastFunction runtime and control messages (which
travel through gRPC in both the gRPC and shared memory systems), as previously
described in the I/O overhead results. The gRPC implementation shows a higher latency
than the Native execution, starting from 2.46ms, then having an inflection point at about
1MB of buffers size and reaching a maximum of 24ms for the largest image. Instead,
the shared memory implementation shows a mostly constant overhead (between 2-3ms)
following the same linear behaviour of the Native implementation.

Figure 6.3 shows the latencies for the MM kernel. The MM accelerator is compute-
intensive, meaning that the execution time is higher than the I/O times. In fact, the exe-
cution overhead between the native and remote execution is low for both communication
systems (still remaining lower in the shared memory system). The Native runtime shows
a minimum latency of 0.45ms for the smallest matrices (16×16 in both input and output
matrices), but quickly rises for bigger matrices up to 3.571s (for 4076× 4096 matrices).
As in the Sobel accelerator results, both gRPC and shared memory implementations
show a minimum latency of 2.46ms and 2.80ms respectively, given by the control signals.
The gRPC-based runtime reaches a maximum of 3.675s, while the shared memory imple-
mentation reaches 3.588s for the largest case, which is only 17ms more than the Native
execution.

Table 6.1 shows the minimum and maximum latencies observed in our tests using the

61

6.1. System Overhead Evaluation

Min (ms) Max (ms) Max (%)

Sobel 2.07 3.49 24.04
MM 2.35 17.70 0.27
PipeCNN - VGG 41.08 41.08 11.31
PipeCNN - AlexNet 15.79 15.79 31.27

Table 6.1: Latency Overhead results for the shared memory implementation (w.r.t native)

shared memory communication system. The minimum overhead is similar in both Sobel
and MM (2.07ms and 2.35ms respectively), showing that this minimum latency is given
by the already described factors (e.g. BlastFunction control messages and ACKs). The
maximum latency overhead depends instead on the size of the buffer tested. For Sobel, we
tested up until a Full HD image size (1920×1080 RGB pixels), with a minimum overhead
of 2.07ms and a maximum of 3.49ms (about ∼ 24% w.r.t the native execution on the
same input). The MM kernel was tested up to a 4096 × 4096 matrix, with 2 matrices
in input and 1 in output. We show a minimum overhead of 2.35ms and a maximum of
17.7ms, which corresponds to ∼ 0.27% of the native execution.

Finally, we tested the PipeCNN accelerator on two different network already provided
by the authors, which are AlexNet and VGG. Given that each network takes a fixed-size
image, we tested only that size and report the average latency in Table 6.1. For VGG
acceleration we measured an average of 41ms of overhead w.r.t native execution, and
16ms for AlexNet. Considering the difference between the native execution time and the
remote latency, we achieve ∼ 11.3% overhead for VGG and ∼ 31.3% for AlexNet.

Given the shown results for the overhead of our system when considering a single
node setup, we can make some considerations. The first is that further studies need to
be done with regards to the communication system. The current system introduces a
small overhead because of the multiple copies done to the transferred data and the gRPC
control signals. In fact, in all the tests we measured an initial 2-3ms step, given by this
overhead. Moreover, in a synchronous scenario, multiple calls to parallel kernels may be
delayed (as in the case of the PipeCNN accelerator).

A second consideration concerns the kernels which may be the best fit for this kind
of system. In fact, the overhead results show that the latency in the read/write only
scenario without executing a kernel is higher than when a kernel is running. This means
that the overall impact of our system depends on the different complexity and operational
intensity of the underlying accelerator. When the majority of the task execution time is
passed in the kernel execution (as in the MM example, representing a highly operational
intense kernel) the overall overhead is low. Instead, in a less complex or low operational
intense accelerator the I/O latencies impact more on the task, even if the system tries
to reduce the overhead through a shared memory system. This derives from the fact
that the native system does not execute any copies of the data, while the isolation
and transparency goals of our system require at least one copy. Given this facts, we

62

6.2. Distributed System Evaluation

conclude that BlastFunction could target compute-intensive kernels in which the input
and output data is low w.r.t the internally used data, such that the computation time
exceeds the host-device transfer time. Examples of operational intense tasks are MM and
Neural Networks, as the majority of the data remains inside the accelerator and the high
complexity means that most of the execution time is passed computing internal values,
without needing host-device communication.

6.2 Distributed System Evaluation

The previous section presented the results and considerations concerning the overhead
introduced by our system in a single-node, single-application scenario. In this section, we
turn the focus on the evaluation of the system in a small cluster. We first describe a single-
application multi-node test to show how the FPGA utilization and the performances of
our system differ from the native execution. Then, we present a multi-application scenario
to show how our methodology allows to improve the current approach to FPGA usage
in the cloud in terms of sharing and utilization.

6.2.1 Experimental Setup

To perform the distributed scenario experiments, we performed multiple tests in a local
cluster deployed in our laboratory. The cluster is composed of three nodes, one master
and two workers. The master node contains a single-socket 2.80GHz Intel® Xeon®W3530
CPU, with 8 threads (4 cores) and 24GB of DDR3 RAM. Each worker node is equipped
with a single socket 3.40GHz Intel® Core™ i7-6700 CPU, with 8 total threads (4 cores)
and 32GB of DDR4 RAM. Each node is connected to the local network through a 1Gb/s
Ethernet link. Moreover, we installed a Terasic DE5a-Net FPGA board on every node
in the cluster (including the master). The board includes an Intel®Arria 10 GX FPGA
(1150K logic elements) along with 8GB RAM over 2 DDR2 SODIMM sockets and a PCI
Express x8 connector (version 3 for worker nodes, version 2 for the master node).

To deploy the system, we followed the design described in Section 5.2.2. In partic-
ular, we deployed a central Prometheus server to collect metrics about the applications
latency and the FPGAs devices utilization, and a OpenFaaS gateway to work as a Load
Balancer for the tested serverless functions. In addition, for the BlastFunction tests we
deployed the central Accelerators Registry and the Device Managers (the latters using a
DaemonSet, resulting in one Device Manager running on each host in the cluster).

We tested the three use-cases described in Section 5.3, which are Sobel filter, Matrix
Multiplication and AlexNet (using the PipeCNN accelerator). In particular, we developed
a C++ HTTP server using the Pistache HTTP framework [40] to receive requests and call
the accelerator with pre-defined data on each request. Then we wrapped the developed
server into an OpenFaaS template based on Dockerfiles. The Native version of the
Dockerfile links the server to a standard OpenCL library, which then directly accesses
the host device through a bind mount on the container. The BlastFunction version of

63

6.2. Distributed System Evaluation

0 25 50 75 100 125 150 175
Load (req/s)

0

50

100

150

200

250

U
til

iz
at

io
n

(%
)

Sobel BlastFunction
Sobel Native

Figure 6.4: Device Utilization percentage (100% = One FPGA used 100% of the time) with an
increasing number of processed requests per second for Sobel function using Native and BlastFunction
runtimes.

the Dockerfile integrates instead with our Remote OpenCL Library, avoiding the direct
access to the host devices. In addition, the Native application autonomously exposes the
device utilization metrics using OpenCL profiling methods, while in the BlastFunction
case all metrics are exposed by the Device Managers.

6.2.2 Single-application evaluation

In this first set of experiments, we decided to deploy and test a single application in-
side the cluster, to see how the system behaves under stress. Moreover, the experiments
allow to test whether the introduced overhead impacts in a real-case scenario, in which
multiple requests may arrive simultaneously and without idle periods. We tested each
application using the Hey [41] tool for HTTP load testing. In particular, after deploy-
ing the application and the underlying system (e.g. Registry and Device Managers for
the BlastFunction scenario), we executed the load test multiple times with an increasing
number of requests sent per second, collecting the latencies (aggregated as average and
percentiles) and the device utilization during the test.

Figure 6.4 shows the total devices utilization for the Sobel function. We can notice
that both the Native and BlastFunction systems follow a linear utilization of the devices
at increasing loads. At higher processed requests per second, the BlastFunction runtime

64

6.2. Distributed System Evaluation

0 25 50 75 100 125 150 175
RPS

25

30

35

40

45

50

55

La
te

nc
y

(m
s)

Sobel BlastFunction
Sobel Native

Figure 6.5: Sobel function latency with an increasing number of processed requests, using Native and
BlastFunction runtimes.

is able to reduce the total utilization w.r.t the Native case. This allows the BlastFunction
system to reach a higher throughput under load with the same utilization, thanks to the
decoupling between the application and the device. For example, when the load tester
sends 180 requests per second, the Native system is able to respond to 150 requests,
resulting in a 207% utilization. Meanwhile, the BlastFunction serverless system reaches
163 requests processed and a utilization of 192.61%. A final consideration that can be
made about this test is that both runtimes are not able to fully access the three devices
in the cluster, due to additional overheads derived from processing multiple requests
concurrently. In fact, connecting a single application per device does not remove the
software overhead to the task execution. This happens because the function can execute
only one task at a time due to the serialization employed by the runtime (single OpenCL
queue in the native implementation, single task queue it the Device Manager for the
BlastFunction system).

Figure 6.5 shows the average response latency of the function. The graph indicates
that the function latency is higher than the corresponding kernel latency. In fact, in the
overhead tests at the currently used input size (1920×1080 pixels) we measured an aver-
age execution time of 14.53ms for the Native runtime, and 18.03ms for the BlastFunction
runtime (using the shared memory mechanism). The latencies measured in the distrib-
uted test are instead higher, in the 40-55ms range. This is due to the distributed fashion
of the test which involves an additional latency observed by the client, and by the fact
that multiple requests are processed at the same time. Indeed, as the function receives

65

6.2. Distributed System Evaluation

requests from multiple connections, it enqueues multiple tasks to the runtime (either
BlastFunction or Native) concurrently. However, both runtimes employ a single queue,
meaning that each task waits for the previous ones to complete before being executed.
This leads to an increase in the average response latency, as shown in the results.

0 50 100 150 200 250 300 350
Load (req/s)

0

25

50

75

100

125

150

175

200

U
til

iz
at

io
n

(%
)

Matmult BlastFunction
Matmult Native

Figure 6.6: Device Utilization percentage (100% = One FPGA used 100% of the time) with an
increasing number of processed requests per second for Matrix Multiplication function using Native
and BlastFunction runtimes.

We now describe the results for the Matrix Multiplication function. Figure 6.6 shows
the total devices utilization. As in the Sobel experiments, in both the Native and Blast-
Function cases we were not able to fully utilize the available devices because of additional
application overheads. The difference w.r.t the previously described experiments lies in
the different utilization trend between the BlastFunction and Native runtimes. In fact,
the BlastFunction runtime follows a linear behaviour when increasing the number of pro-
cessed requests, while the Native runtime is not linear. This may be explained by the
different nature of the Matrix Mutiply kernel w.r.t the Sobel kernel. The Sobel acceler-
ator has a linear complexity as it is memory intensive. This means that, with a single
accelerator synthesized on the device, the transfer times for the buffers can be used to
interleave multiple kernel executions. The Matrix Multiplication kernel has instead a
quadratic complexity, which means that the I/O latency doesn’t interfere with the exe-
cution. The same results have already been observed in the overhead experiments, as we
showed that the Matrix Multiplication kernel is not affected by our I/O overhead. This
means that the system can not rely on transfer latencies to interleave kernel executions.
Using BlastFunction instead the additional overhead introduced by the buffer copy op-

66

6.2. Distributed System Evaluation

0 50 100 150 200 250 300 350
RPS

20

25

30

35

40

45

50

55

La
te

nc
y

(m
s)

Matmult BlastFunction
Matmult Native

Figure 6.7: Matrix Multiplication function average latency with an increasing number of processed
requests, using Native and BlastFunction runtimes.

eration allows to perform the interleaving, increasing the throughput. The results show
that the Native runtime is able to reach a maximum of 159 requests per second, with
a 183.91%, while the BlastFunction-based function was able to reach 374 requests per
second with a 202.47% utilization. Moreover, as shown in Figure 6.7, the BlastFunction
runtime latency is in the 20-30 ms range(min 18.58ms, max 27.80ms), while the Native
latency grows from a minimum of 22ms to a maximum of 57.06ms.

We finally describe the results for the AlexNet function (which uses the PipeCNN
accelerator). As shown in Figure 6.8 and Figure 6.9 the results are similar to the Matrix
Multiplication experiment. The Native runtime reaches a maximum of 23.63 requests per
second with a 242.16% utilization, while the BlastFunction runtime reaches 39.52 requests
per second with a 249.40% utilization. Both runtimes latencies grow with the increasing
number of requests issued, but the BlastFunction system is able to keep them under 300ms
throughout the execution of the tests, while the Native runtime reaches a maximum
of 390.2ms. In general, in both system the average latency is always higher than the
latency measured in the overhead test (between 50-66ms) because of the network overhead
between the testing node and the cluster and of the additional overhead given by the
HTTP framework. Moreover, the PipeCNN accelerator presented additional challenges
given by the presence of multiple OpenCL queues and multiple kernel executions in the
same task, which increased the complexity and the latency for both runtimes. As the
Matrix Multiplication accelerator, the PipeCNN kernel is compute-intensive, and this led
to higher performances of the BlastFunction system w.r.t the Native runtime.

67

6.2. Distributed System Evaluation

5 10 15 20 25 30 35 40
Load (req/s)

50

100

150

200

250

U
til

iz
at

io
n

(%
)

AlexNet BlastFunction
AlexNet Native

Figure 6.8: Device Utilization percentage (100% = One FPGA used 100% of the time) with an in-
creasing number of processed requests per second for AlexNet function using Native and BlastFunction
runtimes.

5 10 15 20 25 30 35 40
RPS

100

150

200

250

300

350

400

La
te

nc
y

(m
s)

AlexNet BlastFunction
AlexNet Native

Figure 6.9: AlexNet function average latency with an increasing number of processed requests, using
Native and BlastFunction runtimes.

68

6.2. Distributed System Evaluation

Use-Case Configuration 1st 2nd 3rd 4th 5th

Sobel
Low load 20 rq/s 15 rq/s 10 rq/s 5 rq/s 5 rq/s
Medium Load 35 rq/s 30 rq/s 25 rq/s 20 rq/s 15 rq/s
High Load 60 rq/s 50 rq/s 35 rq/s 30 rq/s 15 rq/s

Matmult
Low load 28 rq/s 21 rq/s 14 rq/s 7 rq/s 7 rq/s
Medium Load 49 rq/s 42 rq/s 35 rq/s 28 rq/s 21 rq/s
High Load 84 rq/s 70 rq/s 49 rq/s 42 rq/s 21 rq/s

AlexNet
Medium load 6 rq/s 3 rq/s 3 rq/s 3 rq/s 3 rq/s
High Load 9 rq/s 9 rq/s 6 rq/s 6 rq/s 3 rq/s

Table 6.2: Tests configurations overview, showing how many requests per second were sent to each
function for each use-case.

.

6.2.3 Multi-application evaluation

To properly test the assumption of this thesis work that sharing FPGAs represents an
advantage in serverless cloud scenarios, we run a set of multi-application, multi-node
experiments. In particular, we deployed multiple serverless functions using the same
kind of accelerator in the previously described cluster, and tested them with different load
configurations. The goal of these experiments is to verify that, under normal utilization
(meaning that the system is not stressed), BlastFunction allows to increase the number
of served tenants without major performance and latency losses.

For each use case (Sobel, Matrix Multiplication and CNN), we performed the exper-
iments by deploying 5 functions with the same functionality (and using the same kind
of accelerator) in the BlastFunction test, while we could deploy only 3 functions in the
Native scenario (one for each device). Moreover, in order to test the system response and
utilization without external influences given by the different allocation of the Function
Instances, we opted for a fixed allocation to better show how sharing the FPGA allow to
run more applications on the same device.

We then performed a load test using the Hey tool as in the previous tests, with
different configurations regarding the number of requests per second to send to each
function. The load test creates one HTTP connection to each deployed function, sending
the chosen number of requests for each function sequentially. Table 6.2 show all the
configurations used for the BlastFunction runtime. For the Native scenario we consider
only the 1st, 2nd and 3rd columns, as there are only three functions deployed during the
tests.

We show the per-function results for the Sobel use-case in Table 6.3. The results are
divided in scenarios (BlastFunction vs Native), configuration and tested function. We also
show the node on which each function was deployed in order to see the effect of sharing
the device among multiple tenants. It can be seen that in the first configuration both
runtimes allows the deployed functions to respond to almost all sent requests, with low

69

6.2. Distributed System Evaluation

Type Configuration Function Node Utilization Latency Processed Sent

BlastFunction

Low Load

sobel-1 B 21.95% 21.43 ms 17.25 rq/s 20.00 rq/s
sobel-2 A 22.57% 24.23 ms 15.00 rq/s 15.00 rq/s
sobel-3 C 13.22% 19.01 ms 10.00 rq/s 10.00 rq/s
sobel-4 A 7.49% 31.98 ms 5.00 rq/s 5.00 rq/s
sobel-5 B 6.48% 27.16 ms 5.00 rq/s 5.00 rq/s

Medium Load

sobel-1 B 40.95% 19.45 ms 32.93 rq/s 35.00 rq/s
sobel-2 A 39.40% 23.62 ms 26.30 rq/s 30.00 rq/s
sobel-3 C 32.85% 18.28 ms 24.98 rq/s 25.00 rq/s
sobel-4 A 29.85% 26.99 ms 19.98 rq/s 20.00 rq/s
sobel-5 B 18.76% 22.94 ms 14.97 rq/s 15.00 rq/s

High Load

sobel-1 B 60.31% 18.95 ms 49.58 rq/s 60.00 rq/s
sobel-2 A 39.15% 32.05 ms 26.63 rq/s 50.00 rq/s
sobel-3 C 45.75% 17.82 ms 34.96 rq/s 35.00 rq/s
sobel-4 A 38.44% 22.56 ms 26.11 rq/s 30.00 rq/s
sobel-5 B 18.39% 21.74 ms 15.00 rq/s 15.00 rq/s

Native

Low Load
sobel-1 A 30.41% 25.02 ms 19.49 rq/s 20.00 rq/s
sobel-2 B 19.74% 21.50 ms 14.74 rq/s 15.00 rq/s
sobel-3 C 13.73% 24.34 ms 9.75 rq/s 10.00 rq/s

Medium Load
sobel-1 A 51.48% 26.04 ms 33.11 rq/s 35.00 rq/s
sobel-2 B 37.19% 23.33 ms 27.95 rq/s 30.00 rq/s
sobel-3 C 34.22% 23.48 ms 24.23 rq/s 25.00 rq/s

High Load
sobel-1 A 58.10% 26.77 ms 38.36 rq/s 60.00 rq/s
sobel-2 B 54.69% 23.95 ms 41.80 rq/s 50.00 rq/s
sobel-3 C 44.81% 24.75 ms 32.61 rq/s 35.00 rq/s

Table 6.3: Multi-function test results for the Sobel accelerator, divided per System, Configuration
and function.

latency (between 20-30ms, in line with the overhead results). In the second configuration
the BlastFunction runtime (which represents a medium load) is sometimes not able to
answer all requests, as the total load per node is near the limit of the accelerator in terms
of throughput. For example, the sobel-1 and sobel-5 functions (both deployed on node
B) receive a total of 50 requests per second and respond to 47.9 requests on average. The
same happens between sobel-2 and sobel-4, which respond to 46.2 requests over 50.
In the last configuration the system is fully saturated, in fact the functions on nodes A
and B do not respond to some requests Functions sobel-1 and sobel-5 processed 64.58
requests over 75, and the high stress put on the functions and the Device Manager leads
to an underutilization of the board (78.7% average for node B). This derives from the
acceleration contention between two tenants and a high number of requests. The Native
scenario does not show the same behavior of the BlastFunction serverless system, because
each function has an entire board for itself. However, we can see that in some cases the
board utilization is lower, even w.r.t the single function utilization in the BlastFunction
scenario. For example, in the third configuration, sobel-1 experiences a considerable
performance and utilization drop even if the board is not shared.

Table 6.4 shows the aggregate results of the Sobel use-case derived from the previous

70

6.2. Distributed System Evaluation

Type Configuration Utilization Latency Processed Sent

BlastFunction Low load 71.70% 24.76 ms 52.24 rq/s 55 rq/s
Medium Load 161.81% 22.25 ms 119.15 rq/s 125 rq/s
High Load 202.03% 22.62 ms 152.27 rq/s 190 rq/s

Native Low Load 63.87% 23.62 ms 43.98 rq/s 45 rq/s
Medium Load 122.88% 24.28 ms 85.29 rq/s 90 rq/s
High Load 157.60% 25.15 ms 112.77 rq/s 145 rq/s

Table 6.4: Multi-function test aggregate results for Sobel in terms of average latency, utilization and
processed/sent requests.

table. We can see that the average response latencies (aggregated over the same test on
multiple functions) are similar in both the Native and BlastFunction scenarios, even if
the second case includes a concurrent access to the same device by multiple functions.
Moreover, in the BlastFunction scenario we were able to fit more functions than in the
Native scenario (5 instead of 3), and this is reflected by the total number of requests
received and processed. This is the characteristic that allows BlastFunction to be a bet-
ter system in medium load conditions, as it allows to improve the devices utilization by
offering the accelerator to multiple tenants. Regarding the difference between sent and
processed requests, the Native runtime presents an average of 2.25% in the low load con-
figuration, and 5.23% and 22.22% for the medium and high load conditions respectively.
The BlastFunction system has instead averages of 5.01%, 4.67% and 19.85% respectively.
This means that in a medium load configuration the two systems are comparable, while
in high load situations BlastFunction is slightly better (by 2.37%).

We now describe the sharing results regarding the Matrix Multiplication accelerator.
Table 6.5 shows the per-function average measurements obtained. The BlastFunction
implementation of the use-case shows a similar behaviour to the previous experiment for
the Sobel accelerator. In fact, at low and medium load the function processes all requests
and maintain a constant latency across all the functions (between 11 and 15ms). For
example, at medium load function matmult-2 is able to respond to 41.96 rq/s on average
over the 42 rq/s sent by the load tester. In the same configuration, matmult-4 responds
to all the 28 rq/s sent, even if is shares the same device as matmult-2 (on host A).
Moreover, in the same example the two functions latency is the same (11.16ms) even
if the device is shared. Even the "high load" configuration the functions are able to
serve most of the requests. The Native runtime shows instead a behaviour similar to
the single-node experiments previously described, as at a higher load the functions begin
to drop requests at a high rate. For example, at high load the matmult-1 functions do
not respond to 43.85 rq/s, which is more than half the sent requests. In general, all the
Native functions have a limit of 40/41 rq/s, showing a higher utilization that the same
functions using BlastFunction.

Table 6.6 shows the aggregate results for the Matrix Multiplication use-case. We can

71

6.2. Distributed System Evaluation

Type Configuration Function Node Utilization Latency Processed Sent

BlastFunction

Low Load

matmult-1 B 15.79% 11.62 ms 27.98 rq/s 28.00 rq/s
matmult-2 A 12.08% 11.61 ms 20.99 rq/s 21.00 rq/s
matmult-3 C 7.61% 10.07 ms 14.00 rq/s 14.00 rq/s
matmult-4 A 4.00% 13.96 ms 7.00 rq/s 7.00 rq/s
matmult-5 B 4.01% 15.52 ms 7.00 rq/s 7.00 rq/s

Medium Load

matmult-1 B 27.73% 11.70 ms 48.97 rq/s 49.00 rq/s
matmult-2 A 24.00% 11.27 ms 41.96 rq/s 42.00 rq/s
matmult-3 C 18.80% 9.59 ms 34.99 rq/s 35.00 rq/s
matmult-4 A 15.99% 12.29 ms 27.99 rq/s 28.00 rq/s
matmult-5 B 12.01% 13.00 ms 21.00 rq/s 21.00 rq/s

High Load

matmult-1 B 43.27% 9.74 ms 81.33 rq/s 84.00 rq/s
matmult-2 A 39.71% 11.16 ms 69.82 rq/s 70.00 rq/s
matmult-3 C 26.07% 9.09 ms 48.98 rq/s 49.00 rq/s
matmult-4 A 23.95% 11.96 ms 41.96 rq/s 42.00 rq/s
matmult-5 B 11.19% 11.54 ms 20.65 rq/s 21.00 rq/s

Native

Low Load
matmult-1 A 21.55% 21.12 ms 26.73 rq/s 28.00 rq/s
matmult-2 B 20.50% 24.18 ms 20.07 rq/s 21.00 rq/s
matmult-3 C 8.82% 18.07 ms 13.70 rq/s 14.00 rq/s

Medium Load
matmult-1 A 37.96% 24.45 ms 37.75 rq/s 49.00 rq/s
matmult-2 B 39.49% 24.13 ms 36.31 rq/s 42.00 rq/s
matmult-3 C 25.77% 19.87 ms 32.78 rq/s 35.00 rq/s

High Load
matmult-1 A 41.20% 26.20 ms 40.15 rq/s 84.00 rq/s
matmult-2 B 44.18% 24.86 ms 40.33 rq/s 70.00 rq/s
matmult-3 C 37.59% 21.69 ms 41.37 rq/s 49.00 rq/s

Table 6.5: Multi-function test results for the Matrix Multiplication accelerator, divided per System,
Configuration and function.

see that the numbers confirm the results we obtained in the single-application evaluation.
In fact, the Native scenario presents a higher sent/processed requests difference than
the BlastFunction system, with slightly higher latencies, and a similar utilization. The
average difference for the BlastFunction functions is of 0.04%, 0.05% and 1.22% for the
low, medium and high load configurations. Meanwhile, the Native functions reach a
3.97% difference with a low load, and 15.19% and 39.97% in medium and high load
conditions.

Finally, we show the detailed and aggregate results for the AlexNet use case (using
the PipeCNN accelerator). Because of the low number of requests that the accelerator
is able to serve, we decided to test only two configurations, with medium and high load
conditions. Table 6.7 contains the per-function results. As in the previous results, the
BlastFunction runtime at low load conditions allows the deployed functions to respond
to most of the requests sent by the load tester. However, the measured latency for the
observed functions is in some cases more than double the latency observed in the overhead
experiments. This derives from the long execution time of the tasks ran on the device,
which create a higher probability of contention between multiple executions. Because
the Device Manager serializes the arriving tasks on a single queue, most requests need
to wait for the previous ones in order to start. We can see this behaviour in functions

72

6.2. Distributed System Evaluation

Type Configuration Utilization Latency Processed Sent

BlastFunction Low Load 43.49% 12.55 ms 76.96 rq/s 77 rq/s
Medium Load 98.53% 11.57 ms 174.90 rq/s 175 rq/s
High Load 144.18% 10.69 ms 262.73 rq/s 266 rq/s

Native Low Load 50.87% 21.12 ms 60.49 rq/s 63 rq/s
Medium Load 103.22% 22.81 ms 106.84 rq/s 126 rq/s
High Load 122.97% 24.25 ms 121.85 rq/s 203 rq/s

Table 6.6: Multi-function test aggregate results for Matrix Multiplication in terms of average latency,
utilization and processed/sent requests.

Type Configuration Function Node Utilization Latency Processed Sent

BlastFunction

Medium Load

pipecnn-1 B 42.18% 121.29 ms 5.99 rq/s 6.00 rq/s
pipecnn-2 A 21.24% 152.65 ms 3.00 rq/s 3.00 rq/s
pipecnn-3 C 17.45% 71.34 ms 3.00 rq/s 3.00 rq/s
pipecnn-4 A 20.83% 153.59 ms 2.90 rq/s 3.00 rq/s
pipecnn-5 B 22.97% 165.59 ms 3.00 rq/s 3.00 rq/s

High Load

pipecnn-1 B 56.26% 97.63 ms 8.49 rq/s 9.00 rq/s
pipecnn-2 A 51.53% 137.20 ms 7.13 rq/s 9.00 rq/s
pipecnn-3 C 35.60% 70.50 ms 6.00 rq/s 6.00 rq/s
pipecnn-4 A 37.97% 172.33 ms 5.21 rq/s 6.00 rq/s
pipecnn-5 B 20.72% 144.93 ms 3.00 rq/s 3.00 rq/s

Native

Medium Load
pipecnn-1 A 49.42% 100.30 ms 5.92 rq/s 6.00 rq/s
pipecnn-2 B 27.55% 105.49 ms 3.00 rq/s 3.00 rq/s
pipecnn-3 C 19.25% 77.08 ms 3.00 rq/s 3.00 rq/s

High Load
pipecnn-1 A 78.05% 102.57 ms 8.79 rq/s 9.00 rq/s
pipecnn-2 B 71.82% 94.69 ms 8.80 rq/s 9.00 rq/s
pipecnn-3 C 39.96% 77.97 ms 5.97 rq/s 6.00 rq/s

Table 6.7: Multi-function test results for PipeCNN (with AlexNet accelerator), divided per System,
Configuration and function.

which are located on the same node, such as pipecnn-2 and pipecnn-4 in the low load
configuration. In fact, while in the overhead tests we showed an average latency of 66ms
for AlexNet execution, pipecnn-2 responds with an average latency of 152.65ms, and
pipecnn-4 with an average latency of 153.59ms. In the same configuration instead,
pipecnn-1 and pipecnn-5 show respectively 121ms and 165.59ms latencies. This is due
to the high number of requests processed by pipecnn-1, which is double the requests
sent to pipecnn-5. For every request, in fact, on average pipecnn-5 needs to wait for
two tasks enqueued by pipecnn-1. Finally, pipecnn-3 is the only function deployed
on node C, and shows a response latency similar to the one measured in the overhead
tests, because it does not wait for other functions requests. The Native scenario shows
lower latencies than the BlastFunction experiment, as every function is deployed without
sharing the underlying device and without waiting for other functions tasks. However, as
seen in the single-node experiments, it shows a higher device utilization, even if it able

73

6.3. Closing remarks

Type Configuration Utilization Latency Processed Sent

BlastFunction Medium Load 124.68% 132.89ms 17.88 rq/s 18 rq/s
High Load 202.08% 124.52ms 29.81 rq/s 33 rq/s

Native Medium load 96.22% 94.29ms 11.91 rq/s 12 rq/s
High Load 189.82% 91.74ms 23.57 rq/s 24 rq/s

Table 6.8: Multi-function test aggregate results for PipeCNN (with AlexNet accelerator) in terms of
average latency, utilization and processed/sent requests.

to fulfill almost all sent requests.
Table 6.8 shows the aggregate results of the PipeCNN functions. The results show

that the Native scenario has an average latency of 94.29ms for a medium load and 91.74ms
for a high load, while the BlastFunction system presents a higher latency (132.89ms
for medium and 124.52ms for high loads) as already shown in the previous detailed
description. Regarding the unprocessed requests, the difference in the medium load
configuration is small (0.63% for BlastFunction, 0.68% for Native), while in high load
conditions BlastFunction shows a higher drop rate (9.64% vs 1.79%). However, in both
configurations sharing the underlying devices allows the BlastFunction system to reach a
higher utilization and number of processed requests, even with higher drops than in the
Native scenario.

6.3 Closing remarks

In this Chapter, we evaluated the behavior of our system w.r.t the Native runtime im-
plementation of three different use cases (Sobel, Matrix Multiplication and CNN).

We first measured the overhead introduced in a controlled environment, showing that
our system adds between 0.27% and 24% overhead depending on the executed kernel and
the size of the transferred data, thanks to an efficient buffer transmission mechanism.

We then performed the second set of experiments to test the behaviour of the system
in a small, three node cluster, on a single application. In all cases we show major
improvements in the throughput (up to 2.35x maximum requests processed per second
for the MM and AlexNet cases) with the same devices utilization and without losses in
the response latency.

Finally, we tested the system in a non-saturated scenario but with multiple applica-
tions sharing the devices, showing that BlastFunction is able to reach higher utilization
and number of processed requests thanks to the sharing of the device with multiple
functions (5 instead of 3 of the Native system), with minimal differences in latency and
requests drop given by the concurrent access to the devices.

�

74

Chapter 7

Conclusions and Future work

In this thesis work we proposed BlastFunction, a distributed FPGA sharing system for
the acceleration of microservices and serverless applications in cloud environments. The
proposed system design is based upon the goals of Multi-Tenancy and Scalability, with
a focus on the Transparency of the resulting software library, a reconfiguration-aware
allocation of the devices and the integration with a widely used orchestrator.

In Chapter 2 and Chapter 3 we gave an overview of the background technologies and
the State-of-Art works in the sharing of FPGAs and their integration in cloud environ-
ments. Most of the works handle the sharing challenge at the single-FPGA or single-node
level, or try to offer entire FPGA in a cloud setting or a Pool of devices for batch systems.
To the best of our knowledge, a complete system for FPGA sharing and allocation in a
cloud scenario (including microservices-based and serverless platforms) is still missing.
Moreover, most of the existing frameworks and systems are not transparent to the applic-
ation developer, and are not integrated with existing and known container orchestrators
(such as Kubernetes).

The system design described in Chapter 4 is composed of three main components: a
Remote OpenCL Library, multiple Device Managers and a central Accelerators Registry.
The Remote OpenCL Library allows serverless functions to access the shared FPGAs in
the cluster. The component is custom OpenCL implementation which abstracts the use
of the remote device access protocol and the communication to the other components of
the system from the host code. The Device Manager is the server application deployed
on every node in the system, which allows to perform time-sharing of the underlying
device. Moreover, each Device Manager exposes metrics about the runtime behaviour of
the device, allowing the other components to act accordingly. Finally, the Accelerators
Registry is the central controller of the system, which tackles the goal of allocating the
available devices efficiently using runtime performance metrics. It does so by tracking
the device utilization metrics from the Device Managers and performing an online device
allocation algorithm which takes also care of reconfiguring the devices at runtime. In
addition, it intercepts the deployment and removal of applications inside the cluster to
integrate them with the system and perform the allocation algorithm.

We described the system implementation, along with a description of the evaluated
use cases, in Chapter 5. BlastFunction includes a common communication layer for

all the components implemented using gRPC for control messages and for out-of-node
communications. Moreover, it provides a shared memory layer to perform buffer passing
operations, which allows to reduce the overhead. The Accelerators Registry integrates
with external components in three ways: for Kubernetes, with a set of WebHooks to
intercept the Functions creation and deletion and its API to move them to the proper
node; with the Prometheus metrics database to receive the runtime metrics needed for
the allocation and reconfiguration algorithms.

We evaluated the system on three different use-cases to check our assumptions and
verify our goals: Sobel, Matrix Multiplication and Convolutional Neural Networks. In all
three cases, we used already available benchmarks to verify the host code transparency,
and created serverless functions with the OpenFaaS system to perform our experiments.
We first measured the overhead introduced by BlastFunction on a single node and a single
application, which is between 0.27% and 24% depending on the executed kernel and on
the size of the transferred buffers. Then, we performed a second set of experiments to test
the behaviour of the system in a small, three node cluster equipped with Altera FPGAs,
on a single application, showing major improvements in the throughput (up to 2.35x
maximum requests processed per second) with the same devices utilization and without
losses in the response latency. Finally, we tested the system in a scenario with multiple
serverless functions. BlastFunction is able to reach higher utilization and number of
processed requests thanks to the sharing of the device, with minimal differences in latency
and processed requests given by the concurrent access to the devices.

Future Works We here describe the possible extensions/future works to BlastFunc-
tion, which are divided in two areas: cloud integration and methodology extensions.
Regarding cloud integration, at the moment BlastFunction integrates with the Kuber-
netes orchestrator to trigger the allocation of devices to Pods and to enable the migration
of pods when an FPGA is reconfigured. However, the system does not implement yet an
autoscaling algorithm based on the current system utilization, given the limited number
of devices used during the development. To this aim, future works will revolve around the
development of an autoscaling methodology for cloud environments with more resources
(such as AWS or Nimbix cloud).

Regarding the sharing methodology, a major limitation of BlastFunction is that it
assumes a single accelerator per device, thus limiting the allocation to applications using
the same kernels. Future works will include the integration of space-sharing techniques
(such as FPGA virtualization or the use of overlays) alongside the main time-sharing
methodology proposed in this thesis. This will allow to share the device among multiple
functions which use different kernels, maximizing area utilization in addition to time
slots. Finally, a possible extension of the methodology could include pooling techniques
to offer multiple devices as a single one, as described in the works in Section 3.4.

�

76

Bibliography

[1] Yusuke Fujii, Takuya Azumi, Nobuhiko Nishio, Shinpei Kato and Masato Edahiro.
Data transfer matters for gpu computing. In 2013 International Conference on
Parallel and Distributed Systems, pages 275–282. IEEE, 2013.

[2] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Go-
pal, Jan Gray et al. A reconfigurable fabric for accelerating large-scale datacenter
services. ACM SIGARCH Computer Architecture News, 42(3):13–24, 2014.

[3] Shuichi Asano, Tsutomu Maruyama and Yoshiki Yamaguchi. Performance compar-
ison of fpga, gpu and cpu in image processing. In 2009 international conference on
field programmable logic and applications, pages 126–131. IEEE, 2009.

[4] Bharat Sukhwani, Bulent Abali, Bernard Brezzo and Sameh Asaad. High-throughput,
lossless data compresion on fpgas. In 2011 IEEE 19th Annual International Sym-
posium on Field-Programmable Custom Computing Machines, pages 113–116. IEEE,
2011.

[5] Philippos Papaphilippou and Wayne Luk. Accelerating database systems using
fpgas: a survey. In 2018 28th International Conference on Field Programmable
Logic and Applications (FPL), pages 125–1255. IEEE, 2018.

[6] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han Hu,
Yun Liang and Jason Cong. Automated systolic array architecture synthesis for
high throughput cnn inference on fpgas. In Proceedings of the 54th Annual Design
Automation Conference 2017, page 29. ACM, 2017.

[7] Amazon EC2 F1 instances. https://aws.amazon.com/ec2/instance-types/f1/.
(Visited on 12/06/2019).

[8] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers,
Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim
et al. A cloud-scale acceleration architecture. In The 49th Annual IEEE/ACM
International Symposium on Microarchitecture, page 7. IEEE Press, 2016.

[9] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian Caulfield,
Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman et al.
Serving dnns in real time at datacenter scale with project brainwave. IEEE Micro,
38(2):8–20, 2018.

https://aws.amazon.com/ec2/instance-types/f1/

BIBLIOGRAPHY

[10] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khan-
delwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Yad-
wadkar et al. Cloud programming simplified: a berkeley view on serverless comput-
ing. arXiv preprint arXiv:1902.03383, 2019.

[11] Peter Mell, Tim Grance et al. The nist definition of cloud computing, 2011.

[12] Docker containers. https://www.docker.com. (Visited on 28/02/2019).

[13] Openfaas architecture image thanks to alex ellis. url: https://docs.openfaas.c
om/architecture/gateway/ (visited on 12/06/2019).

[14] Openfaas serverless framework. https://www.openfaas.com/. (Visited on 12/06/2019).

[15] Khronos group. https://www.khronos.org/. (Visited on 12/06/2019).

[16] Nimbix cloud fpga. url: https://www.nimbix.net/cloud- fpga/ (visited on
14/06/2019).

[17] Julio Proaño Orellana, Blanca Caminero, Carmen Carrión, Luis Tomas, Selome
Kostentinos Tesfatsion and Johan Tordsson. FPGA-Aware Scheduling Strategies at
Hypervisor Level in Cloud Environments. Scientific Programming, 2016(1), 2016.
issn: 10589244. doi: 10.1155/2016/4670271.

[18] Wei Wang, Miodrag Bolic and Jonathan Parri. PvFPGA: Accessing an FPGA-
based hardware accelerator in a paravirtualized environment. 2013 International
Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS
2013, 2013. doi: 10.1109/CODES-ISSS.2013.6658997.

[19] Qian Zhao, Motoki Amagasaki, Masahiro Iida, Morihiro Kuga and Toshinori Suey-
oshi. Enabling FPGA-as-a-service in the cloud with hCODE platform. IEICE Trans-
actions on Information and Systems, E101D(2):335–343, 2018. issn: 17451361. doi:
10.1587/transinf.2017RCP0004.

[20] Anca Iordache, Guillaume Pierre, Peter Sanders, Jose Gabriel de F. Coutinho and
Mark Stillwell. High performance in the cloud with FPGA groups. Proceedings of
the 9th International Conference on Utility and Cloud Computing - UCC ’16 :1–10,
2016. issn: 16130073. doi: 10.1145/2996890.2996895. arXiv: arXiv:1603.07016
v1. url: http://dl.acm.org/citation.cfm?doid=2996890.2996895.

[21] Mikhail Asiatici, Nithin George, Kizheppatt Vipin, Suhaib A. Fahmy and Paolo
Ienne. Designing a virtual runtime for FPGA accelerators in the cloud. FPL 2016
- 26th International Conference on Field-Programmable Logic and Applications,
2016. doi: 10.1109/FPL.2016.7577389.

[22] Stelios Mavridis, Manolis Pavlidakis, Ioannis Stamoulias, Christos Kozanitis, Nikolaos
Chrysos, Christoforos Kachris, Dimitrios Soudris and Angelos Bilas. VineTalk: Sim-
plifying software access and sharing of FPGAs in datacenters. 2017 27th Interna-
tional Conference on Field Programmable Logic and Applications, FPL 2017 :2–5,
2017. doi: 10.23919/FPL.2017.8056788.

78

https://www.docker.com
https://docs.openfaas.com/architecture/gateway/
https://docs.openfaas.com/architecture/gateway/
https://www.openfaas.com/
https://www.khronos.org/
https://www.nimbix.net/cloud-fpga/
https://doi.org/10.1155/2016/4670271
https://doi.org/10.1109/CODES-ISSS.2013.6658997
https://doi.org/10.1587/transinf.2017RCP0004
https://doi.org/10.1145/2996890.2996895
https://arxiv.org/abs/arXiv:1603.07016v1
https://arxiv.org/abs/arXiv:1603.07016v1
http://dl.acm.org/citation.cfm?doid=2996890.2996895
https://doi.org/10.1109/FPL.2016.7577389
https://doi.org/10.23919/FPL.2017.8056788

BIBLIOGRAPHY

[23] Marcello Pogliani, Gianluca C. Durelli, Antonio Miele, Tobias Becker, Peter Sanders,
Cristiana Bolchini and Marco D. Santambrogio. Quality of Service Driven Runtime
Resource Allocation in Reconfigurable HPC Architectures. Proceedings - 19th IEEE
International Conference on Computational Science and Engineering, 14th IEEE
International Conference on Embedded and Ubiquitous Computing and 15th In-
ternational Symposium on Distributed Computing and Applications to Business,
Engi :16–23, 2017. doi: 10.1109/CSE-EUC-DCABES.2016.156.

[24] Anuj Vaishnav, Khoa Dang Pham, Dirk Koch and James Garside. Resource Elastic
Virtualization for FPGAs using OpenCL.

[25] Zhuangdi Zhu, Alex X. Liu, Fan Zhang and Fei Chen. FPGA Resource Pooling in
Cloud Computing. IEEE Transactions on Cloud Computing, PP(c):1, 2018. issn:
21687161. doi: 10.1109/TCC.2018.2874011.

[26] Yangming Zhao, Chen Tian, Zhuangdi Zhu, Jie Cheng, Chunming Qiao and Alex
X. Liu. Minimize the Make-span of Batched Requests for FPGA Pooling in Cloud
Computing. IEEE Transactions on Parallel and Distributed Systems, 29(11):2514–
2527, 2018. issn: 15582183. doi: 10.1109/TPDS.2018.2829860.

[27] D. Ojika, A. Gordon-ross, H. Lam, B. Patel, G. Kaul and J. Strayer. Using FPGAs
as Microservices: Technology, Challenges and Case Study. Bpoe:0–5, 2018.

[28] Adrian M Caulfield, Others, Eric S Chung, Puneet Kaur, Joo-young Kim Daniel,
Lo Todd and Massengill Kalin. A cloud-scale acceleration architecture. 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO):1–
13, 2016. issn: 10724451. doi: 10.1109/MICRO.2016.7783710.

[29] JagathWeerasinghe, Francois Abel, Christoph Hagleitner and Andreas Herkersdorf.
Enabling FPGAs in hyperscale data centers. Proceedings - 2015 IEEE 12th Inter-
national Conference on Ubiquitous Intelligence and Computing, 2015 IEEE 12th
International Conference on Advanced and Trusted Computing, 2015 IEEE 15th
International Conference on Scalable Computing and Communications, 20 :1078–
1086, 2016. doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.199.

[30] Stuart Byma, J. Gregory Steffan, Hadi Bannazadeh, Alberto Leon-Garcia and
Paul Chow. FPGAs in the cloud: Booting virtualized hardware accelerators with
OpenStack. Proceedings - 2014 IEEE 22nd International Symposium on Field-
Programmable Custom Computing Machines, FCCM 2014 :109–116, 2014. doi: 10
.1109/FCCM.2014.42.

[31] David Ojika, Piotr Majcher, Wojciech Neubauer, Suchit Subhaschandra and Darin
Acosta. SWiF: A simplified workload-centric framework for FPGA-based comput-
ing. Proceedings - IEEE 25th Annual International Symposium on Field-Programmable
Custom Computing Machines, FCCM 2017 :26, 2017. doi: 10.1109/FCCM.2017.52.

79

https://doi.org/10.1109/CSE-EUC-DCABES.2016.156
https://doi.org/10.1109/TCC.2018.2874011
https://doi.org/10.1109/TPDS.2018.2829860
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.199
https://doi.org/10.1109/FCCM.2014.42
https://doi.org/10.1109/FCCM.2014.42
https://doi.org/10.1109/FCCM.2017.52

BIBLIOGRAPHY

[32] Selome Kostentions Tesfatsion, Julio Proaño, Luis Tomás, Blanca Caminero, Car-
men Carrión and Johan Tordsson. Power and performance optimization in FPGA-
accelerated clouds. Concurrency Computation, 30(18), 2018. issn: 15320634. doi:
10.1002/cpe.4526.

[33] Mikhail Asiatici, Nithin George, Kizheppatt Vipin, Suhaib A. Fahmy and Paolo
Ienne. Virtualized Execution Runtime for FPGA Accelerators in the Cloud. IEEE
Access, 2017. issn: 21693536. doi: 10.1109/ACCESS.2017.2661582.

[34] Julio Proaño Orellana, María Blanca Caminero and Carmen Carrión. On the provi-
sion of SaaS-level quality of service within heterogeneous private clouds. Proceedings
- 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing,
UCC 2014 :146–155, 2014. doi: 10.1109/UCC.2014.23.

[35] Grpc. url: https://www.xilinx.com/products/design-tools/software-zone
/sdaccel.html (visited on 26/06/2019).

[36] Protocol buffers. url: https://developers.google.com/protocol-buffers/
(visited on 26/06/2019).

[37] Protobuffer serialization benchmarking results. url: https : / / github . com / p
rotocolbuffers / protobuf / blob / master / docs / performance . md (visited on
10/06/2019).

[38] Quentin Gautier, Alrie Althoff, Pingfan Meng and Ryan Kastner. Spector: An
OpenCL FPGA benchmark suite. Proceedings of the 2016 International Conference
on Field-Programmable Technology, FPT 2016 :141–148, 2017. doi: 10.1109/FPT
.2016.7929519.

[39] Paul Dong Wang, Ke Xu and Diankun JiangBeckett. PipeCNN: An OpenCL-Based
Open-Source FPGA Accelerator for Convolution Neural Networks.

[40] Pistache c++ rest framework. url: http://pistache.io/ (visited on 26/06/2019).

[41] Hey load tester. (Visited on 25/08/2019).

80

https://doi.org/10.1002/cpe.4526
https://doi.org/10.1109/ACCESS.2017.2661582
https://doi.org/10.1109/UCC.2014.23
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://developers.google.com/protocol-buffers/
https://github.com/protocolbuffers/protobuf/blob/master/docs/performance.md
https://github.com/protocolbuffers/protobuf/blob/master/docs/performance.md
https://doi.org/10.1109/FPT.2016.7929519
https://doi.org/10.1109/FPT.2016.7929519
http://pistache.io/

	Abstract
	Sommario
	Introduction
	Background and Problem definition
	Cloud Computing
	Virtualization technologies
	Docker Containers
	Cloud Orchestration: Kubernetes
	Serverless Computing

	Field Programmable Gate Array
	FPGA architecture
	FPGA Reconfiguration and Tools
	Usages of FPGAs
	FPGAs in Cloud Scenarios

	Heterogeneous Computing and OpenCL
	Problem definition and goals
	Problem definition
	Goals

	State of the art
	Works classification
	Single Node FPGA Sharing
	FPGA Sharing in cloud environments
	FPGA Pooling Mechanisms
	Closing remarks

	System Design
	BlastFunction Overview
	Remote OpenCL Library
	Device Manager
	Accelerators Registry
	Allocation algorithm
	Reconfiguration Flow

	Closing remarks

	Implementation
	Communication layer implementation
	gRPC-based communication system
	Shared Memory mechanism for buffers movement

	System integration and Deployment
	Registry integrations
	Complete system Deployment

	Use cases implementation
	Spector: Sobel and Matrix Multiplication
	PipeCNN: Neural Network acceleration
	Integration and serverless implementation

	Experimental results
	System Overhead Evaluation
	Experimental Setup
	Overhead Evaluation Results

	Distributed System Evaluation
	Experimental Setup
	Single-application evaluation
	Multi-application evaluation

	Closing remarks

	Conclusions and Future work
	Bibliography

