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Abstract—In the past few years we have experienced an
extremely rapid growth of modern applications based on deep
learning algorithms such as Convolutional Neural Network
(CNN), and consequently, an intensification of academic and
industrial research focused on the optimization of their imple-
mentation. Among the different alternatives that have been ex-
plored, FPGAs seems to be one of the most attractive, as they are
able to deliver high performance and energy-efficiency, thanks to
their inherent parallelism and direct hardware execution, while
retaining extreme flexibility due to their reconfigurability.

In this paper we present a design methodology of a dataflow
accelerator for the implementation of CNNs on FPGAs, that
ensures scalability – and achieve a higher degree of parallelism
as the size of the CNN increases – and an efficient exploitation
of the available resources. Furthermore, we analyze resource
consumption of the layers of the CNN as well as latency in
relation to the implementation’s hyperparameters. Finally, we
show that the proposed design implements a high-level pipeline
between the different network layers, and as a result, we can
improve the latency to process an image by feeding the CNN
with batches of multiple images.

Index Terms—Field Programmable Gate Arrays, Convolu-
tional Neural Networks, Dataflow Architectures

I. INTRODUCTION

In light of the successes demonstrated by deep learning

techniques, we are recently assisting to their massive develop-

ment and diffusion, up to a point where we take advantage

of them in our every-day life. Among the different deep

learning algorithms, Convolutional Neural Network (CNN)

have demonstrated to be successful in many domains, such as

video surveillance, mobile robot vision, and as image search

engines in data centers[9, 10, 12, 11], achieving far higher

accuracy than traditional algorithms for computer vision. They

have indeed become the state-of-the-art for visual recognition

and classification, attracting interests from both industry and

academia [18, 6]. CNN mimics the receptive field of biological

neurons in the Primary Visual Cortex, by applying consecutive

convolution filters to extract features at increasing levels of

abstraction, used then for classification.

Along with the improvements in accuracy and the refine-

ments of their models, CNN implementations are also increas-

ing their network size and computation requirements, posing

a hard challenge on modern CPUs, not really able to met

the needed performance and energy-efficiency requirements.

Research has therefore focused on exploring specialized

hardware accelerators based on GPUs, ASICs and FPGAs,

achieving superior performance figures, with a better energy-

efficiency[5, 20, 16, 15]. CNN acceleration using FPGAs is

particularly interesting, as FPGAs offers high-flexibility due to

their programmability, and high performance and low power

consumption thanks to direct hardware execution, effectively

offering an appealing trade-off between the best features of

GPUs and ASICs[2, 7, 8, 4].

The literature of CNN acceleration using FPGA mostly

focuses on the acceleration of the sole convolution layers, due

to their heavy impact on the overall computation[20, 8, 4].

In such situation, the chosen approach induce a substantial

communication overhead caused by the continuous need for

data exchange between the accelerator, that is employed to

implement only part of the network, and the host processor,

reducing the effectiveness of off-loading the computation to

a specialized processor. Others, like [19], attempts at creating

a framework for the acceleration of the whole CNN. How-

ever, they propose acceleration methodologies that result in a

suboptimal exploitation of the on-chip memory, and an under-

utilization of the inherent parallelism of the FPGA. Also, they

are not able to exploit the likelihood – as it often happens in

real-world applications – of CNNs being employed to process

batches of multiple images, taking advance of such situation

to extract more efficiency. We instead propose in this paper

an acceleration methodology of CNN via FPGA, consisting

of a dataflow architecture that is able to scale up the size

of each layer from single-input-port/single-output-port to fully

parallel (on the condition that enough resources are available)

and is able to implement a high-level pipeline between the

different network layers, as will be shown in the evaluation

Section. Such methodology derives from previous work on the

acceleration of Iterative Stencil Loops (ISLs)[3, 13], a class

of algorithms whose computational pattern share similarities

with convolutions. To the best of our knowledge, there are

no FPGA-based acceleration methodologies that fully exploit

the dataflow computation pattern of CNNs, provide a scalable

implementation of each layer, and are able to implement a

high-level pipeline within the layers that can improve the

throughput when processing batches of multiple images.

The rest of the paper is organized as follows. Section II
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Fig. 1. Feed-forward of a Convolutional Neural Network.

presents the necessary background. Section III describes the

proposed acceleration methodology and discusses the imple-

mentation choices of a complete network. Then, Section IV

presents the experimental evaluation. We end the paper with

the concluding remarks and discuss the future work in Section

V.

II. BACKGROUND

A. Convolutional Neural Network

Convolutional Neural Network (CNN) is a machine learning

algorithm extended from Artificial Neural Network (ANN) and

specifically tailored for image analysis and other similar 2D-

structured data. Its structure, depicted in Figure 1, consists

of a chain of multiple layers that first extract more and

more complex features, collected in the feature maps, from

the image (feature extraction stage), and then classify it

(classification stage).

The features extraction stage is defined as a chain of two

different layers: the convolutional layer, and the sub-sampling

(or pooling) layer.

The convolutional layer applies a series of K filters (or

kernels) to the previous features maps. In particular, for each

filter k ∈ K, the convolutional layer computes the following

equation:

oi,j,k =

Hk∑

h=0

Wk∑

m=0

Ck∑

c=0

(wh,m,c · xi+h,j+m,c) + bk (1)

where Hk and Wk represents respectively height and weight of

the kernel, C refers to the number of feature maps produced

by the previous layer (Ck ≤ C), bk is a bias, i and j are

the coordinates of the current pixel x in the input volume

belonging to channel c. The convolutional layer may also apply

a nonlinear function, e.g. tanh() or max(0, x), on each value

in the output volume, or allow for further customization of

hyperparameters, like stride and zero-padding.

The sub-sampling layer is usually inserted between two

convolutioanl layers and is employed to reduce the data size of

the various feature maps, while retaining the relevant features.

It is usually implemented as either a max-pooling or mean-
pooling function, which substitutes an input submatrix with

its maximum value or its mean, respectively.

The classification stage is then implemented by means of a

classical Fully-connected Network (FCN), i.e. a series of fully-

connected layers, sometimes followed by a final normalization

operator.

The fully-connected layer is composed by J simple neu-

rons (referred to as perceptrons), whose output values, for

each j ∈ J , consists of a weighted linear combination of the

previous neurons:

oj =
I∑

i=0

(wi,j · xi) + bj (2)

where wi,j represent the weights, xi the neurons from the

previous layer, and bj is an optional bias. The last linear layer

will be constituted by a number of neurons equal to the number

of classification classes.

When present, the normalization operator is in charge of

computing the affinity between the input from the last linear

layer and the classification classes as a percentage. It is usually

implemented by means of a LogSoftMax operator σ:

σj =
exj

∑K
k=1 e

xk

for j = 1, . . . ,K (3)

where xj is the output of the last linear layer. Such operator

enforces the K values of the output to lie in range [0, 1] and

to sum up to 1, expressing therefore the likelihood of the input

to belong to each of the classification classes.

B. Streaming Stencil Time-step

Introduced in [3], a Streaming Stencil Time-step (SST) is

a dataflow accelerator of a single ISL time-step – i.e. the

outermost loop iteration – that is replicated several times to

create a long chain of replicas that constitute the FPGA-

based ISL accelerator proposed. Due to the resemblance of

convolutions to single iterations (time-steps) of an ISL, we

exploited the methodology of the work in [3] to derive the

proposed dataflow accelerator of CNNs. It is therefore worth

of interest to provide some details on the SST, as they can

be useful to better understand the methodology prosed in this

paper.

In an SST, as shown in Figure 2, we can identify a memory
system and a computing system. The computing system consists

of a collection of modules in charge of the actual computation,

that are fed with the required data from the memory system.

The memory system is instead composed of chains of modules,

called filters, interconnected via FIFO channels, where each

chain is responsible for storage and forwarding of data of one

of the array involved in the computation. A chain receives as

input a single data stream – the elements of the array referred

– and the various filters represents the different accesses to

that specific array that are needed to update a point during

the ISL computation. A filter reads any existing element

from it preceding FIFO and forward it to the subsequent one

within the chain (if any). When the requested data arrives

then, such filter, using its filtering equation, sends the data

to the computing system allowing for output production. The

structure of each chain of filters allows for concurrent accesses

to the same array while ensuring that the data is read only

once from the off-chip memory, optimizing memory resource

consumption on the FPGA and realizing full buffering1.

1Data is stored on the on-chip memory only when needed, i.e. until all the
computation depending on it have completed, and is then discarded.
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Fig. 2. Generic structure of an SST.

III. FPGA-BASED ACCELERATION METHODOLOGY

We now detail the proposed dataflow architecture for FPGA-

based acceleration of CNNs, by describing how each layer

is implemented (as a separate module) and how a complete

network is constructed.

A. Convolutional and Sub-sampling Layer Architecture

Since they share similar memory access patterns, the convo-

lutional and sub-sampling layers are here described together

(with focus on the convolutional layer), as they mostly use

the same memory and design optimizations. The convolutional

layer has Ip input channel ports and Op output channels ports,

with Ip ≤ IFM (input feature maps) and Op ≤ OFM (output

feature maps). These interfaces can be used to receive/transmit

multiple feature maps by interleaving the different feature

maps over the same port, and are the parameters used to instan-

tiate the memory structure and the computation core, which

performs the convolutions and combine them. By acting on the

number of instantiated Ip and Op, the designer can perform

a trade-off between parallelism and resource consumption.

In particular, the number of output ports Op represents the

number of output feature maps written in parallel by the

layer, while the number of input ports Ip gives the number

of input feature maps accessed concurrently. A representation

of the convolutional layer is shown in Figure 4. The memory
structure’s architecture is based on the memory system of an

SST, as described before in Section II-B. The values of the

(potentially interleaved) feature maps are transferred into Ip
chains of filters connected by FIFOs, where each filter redirect

its input to the subsequent FIFO within the chain and to the

computation core. Such organization of the memory structure

allow the computation core, once the memory pipeline is filled,

to receive an entire window for each clock cycle. Scalability

of the memory structure with respect to the data size can be

achieved via a memory/bandwidth trade-off, explained in [3].

As the convolutional layer may also present a stride parameter,

indicating that the convolution window does not slide one pixel

at a time, but skips some coordinates, the filtering conditions

of the filters may need to be adapted to account for this

eventuality.

To implement the computation core we need to specify a

set of parameters related to the layer structure and the desired

level of parallelism. Along with the number of input and output

ports Ip and Op, the core expects Wk Hk to be specified, as

Wk and Hk represents respectively the width and height of

the convolution window. The filters of the memory structure,

as well as the computation core, have been implemented

by means of Xilinx Vivado HLS. The pseudocode of the

computation core is presented in Algorithm 1. The core

Algorithm 1 Pseudocode of the computation core of a con-

volutional layer

foreach (x, y) ∈ Coordinates do
outputs← biases
for i = 0 to IFM step Ip do

buf ← Ip windows
buf ← buf · weights
outputs← outputs+ reduce(buf)

end for
send outputs on Op ports

end for

has Op output ports and Ip × (Hk × Wk) input ports, all

implemented using the Axi4Stream protocol. As described in

Algorithm 1, the input is taken Ip feature maps at a time and

then copied on a completely partitioned buffer. The PIPELINE
directive is applied to all the internal loops, including also the

input/output operations. The pipeline initiation interval is then

computed as:

Pipeline II = max(
OFM

Op
,
IFM

Ip
) (4)

In the current implementation, the weights used to perform the

convolutions are hardcoded in on-chip memory. The results

of the multiplications are then added using a tree adder (the

function reduce) and accumulated to the partial results. Such

tree adder is used to perform the addition in parallel and

therefore also decrease the pipeline depth. Once the needed

convolutions are performed, the accumulated values are sent

by the core as output on the output ports.

B. Fully-connected Layer Architecture

The structure of a fully-connected layer is actually sim-

ilar to the structure of a convolutional layer, as indeed it

can be considered a 1 × 1 convolution. Therefore, a fully-

connected layer implementation can be done by using the

same code and considerations made in Section III-A. However,

the unitary window size makes the filters sequences of the

memory structure not needed. Moreover, due to the very high

number of input and output channels, a completely parallelized

layer would utilize too much DSPs, exceeding very easily the

physical limits of the FPGA. Thus, we decided to implement

a fully-connected layer as the computation core of a single-

input-port/single-output-port convolutional layer, where, for

each input value, all the 1 × 1 convolutions of all the output

feature maps are performed in the same clock cycle, while

the output values are then produced sequentially after all the

inputs have been processed.
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Fig. 3. Latency and Resource consumption figures of the computation core
belonging to the first convolutional layer of the CNN for the CIFAR-10

dataset, in relation to φ = max(OFM
Op

, IFM
Ip

). Notice that BRAM occupation

is here not reported as for computation cores is always 0.

C. CNN Accelerator Design

The design of the entire CNN accelerator requires the

designer to perform a trade-off, for each layer, between level

of parallelism and resource occupation. Indeed, the designer

should explore the different level of parallelism and resource

occupation to make the implementation feasible – i.e. it does

not exceed the available resources – and attempt at minimizing

the maximum latency among the different computation cores

of the layers. Indeed, as will be shown in the experimental

evaluation, the proposed CNN accelerator acts like a high-level

pipeline, where the different layers are the “stages”. At steady

state, all the different layers of the CNN are concurrently active

and performing some computation. Such characteristics can

be exploited by feeding the CNN with batches of multiple

images, resulting in an improvement in throughput. Therefore,

minimizing the maximum latency among the computation

cores of the layers will result in the improvement of the

maximum achievable throughput of such pipeline.

Although in this work we did not perform any automated

Design Space Exploration (DSE), we analyzed resource con-

sumption and latency of each computation core and found a

strong correlation between these variables and the maximum

port/feature-map ratio φ = max(OFM

Op
, IFM

Ip
). Indeed, we

discovered that we can linearly relate the growth of resource

requirements to 1
φ , while latency is linearly related to φ.

Latency and resource consumptions with respect to φ and 1/φ
of a computation core (also considering different permutations

of Ip and Op that results in the same φ) are shown in Figure

3. The trend is the same for all computation cores that we

designed.

We can therefore estimate latency and resource occupation

of each computation core for each combination of Ip and Op.

The process consists of synthesizing via HLS just 2 cores

that represents an arbitrary permutation of Ip and Op, and

get the resource estimation by Vivado HLS. We can then

simply compute the slope σ of the underlying linear function,

to estimate every other point of such function:

l = σ(φ− φ0) + l0 (5)

to estimate the latency, where φ0 and the latency l0 are the

values retrieved from either one of the 2 cores synthesized.

Fig. 4. Representation of a convolutional layer. The design is based on the
one of an SST, shown in Figure 2.

To instead estimate the resource occupation of FFs, DSPs,

and LUTs:

ri = σi(
1

φ
− 1

φ0
) + r0i ∀i ∈ R = {FF,DSP,LUT} (6)

The impact on resource occupation of the memory structure
of the convolutional and sub-sampling layers is computed

following the approach described in [3, 13]. For each filters

chain, resource occupation is given by the sizes of the FIFOs

and the occupation of the HLS cores implementing the filters.

Also, each filters chain in a layer is of the same structure, and

therefore of the same size mc. In fact, memory occupation mn

of a layer n ∈ N can be estimated as:

mn = mn
c · Inp (7)

We remark that our experimental evaluation was conducted

without performing any automatic DSE, and instead we just

determined empirically the levels of parallelization and there-

fore the number of I/O ports, essentially to find a layout

that fits on the FPGA chip. Future work will address the

automation of the DSE phase using the considerations made

above. It will be also taken into account the possibility of

splitting the layers into multiple parallel sub-modules (where

each sub-module computes a sub-set of the output feature

maps). Notice that sub-sampling modules can be directly

splitted into parallel versions as they are applied independently

to every feature map. We can therefore create as many sub-

sampling modules as there are output ports of the previous

convolutional layer, reducing the design complexity.
All the distinct layer cores are then connected sequentially

through their I/O ports.

IV. EVALUATION

A. Eperimental Setup
The two tested CNNs have been implemented, using Vivado

HLS and Vivado IPI 2016.3, on a Xilinx VC707 board,

mounting a Virtex-7 (xc7vx485t) FPGA, and running them at

a 100MHz frequency. To perform the tests, each implemented

network has been integrated with a soft-core processor (Mi-

croblaze) coupled with an Axi-Timer, an Axi4-Interconnect

and a DMA to handle the communication from/to the CNN

cores.
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Conv 2
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Fig. 5. Block design of the CNN for the USPS dataset, along with the
hyperparameters of the CNN.

TABLE I
PERFORMANCE AND POWER EFFICIENCY RESULTS

GFLOPS Power Efficiency Image Latency Images/s(GFLOPS/W) (ms)

USPS 5.2 0.25 0.0058 172414
CIFAR-10 28.4 1.19 0.128 7809

[14] (CIFAR-10) - - - 2318

B. Experimental Results

Two CNNs have been implemented and tested, both with

single floating point precision. The first network is composed

of 4 different layers, and is trained and tested with images

from the USPS dataset, composed of handwritten digits (16x16

grayscale images) from the U.S. Postal Service. From this

point forward we will refer to this network as simply USPS.

The network structure and block design are shown in Figure 5.

In our design we were able to parallelize completely the first

convolutional and sub-sampling layers. The second CNN is

composed of 6 layers, and it is trained and tested against

images from the CIFAR-10[1] database (32x32 RGB images).

This network will be referred to as simply CIFAR-10. The

network structure and block design can be seen in Figure 6. In

this case, we implemented every convolutional layer as single-

input-port/single-output-port. We tested both CNNs against an

increasingly high batch of images, from 1 to 1000, to assess

the validity of our claims about the high-level pipeline. Indeed,

Figure 7 shows that the average time to process an image

diminishes when the number of images per batch increases,

until it reaches convergence to approximatively 5.8 μs for

USPS and 128.1 μs for CIFAR-10. It is interesting to notice

that, in both cases, convergence is reached approximatively

when the size of the batch of images becomes greater than

the total number of layers of the CNN. Table I then shows

the performance and power efficiency figures. Notice that

5 x 5
3 in FMs

12 out FMs
32 x 32

Conv 1

2 x 2
12 in FMs

12 out FMs
28 x 28

Pool 1

5 x 5
12 in FMs

36 out FMs
14 x 14

Conv 2

2 x 2
36 in FMs

36 out FMs
10 x 10

Pool 2

900 in
36 out

Lin 1

36 in
10 out

Lin 2

Fig. 6. Block design of the CNN for the CIFAR-10 dataset. The different
hyperparameters of the layers are also reported.

the measurements of performance are done taking also into

account data transfer, as it is interleaved with computation.

We compare our CIFAR-10 implementation with the work by

Microsoft Research in [14], as it is the only work that deals

with the acceleration of a CNN on FPGA (an Altera Stratix

V D5) for the same dataset. With the proposed approach, we

were able to yield 3.36x better performance than [14].

We aimed, with this evaluation, at assessing the validity

of the proposed methodology and proving the effectiveness

of the high-level pipeline. We were able to perform our tests

on relatively small networks and without performing proper

DSE. We will investigate the validity of our approach on larger

CNNs in future work, and perform a proper comparison with

the literature.

V. CONCLUSIONS AND FUTURE WORK

We presented in this paper a methodology to design an

FPGA-based dataflow accelerator for CNNs, building upon

previous work on the acceleration of ISL[3]. Following the

proposed methodology, the designer can perform a trade-off

between parallelization – and therefore performance – and

resource occupation of the accelerator, by scaling each layer

from single-input-port/single-output-port to fully parallel. We

analyzed the impact of the design choices and provided a

formula to estimate latency and resource occupation in relation

to the degree of parallelism.

The approach has been evaluated with two CNN designs, on

respectively the USPS dataset, and the CIFAR-10 dataset. We

were able to show that the high-level pipeline implemented

by the accelerator can be exploited to improve the throughput

when the CNN is fed with batches of images, converging to

a fixed value when the pipeline is completely filled.

Future work will explore different topics. Indeed, we will

focus on the automation of the DSE (exploiting the estimation

formulae of Section III-C)), and perform tests on larger and

more popular CNN models like VGG[17] or AlexNet[10]. We

will also focus on optimizing the design itself, by exploring

further design optimization for the fully-connected layers

and better exploit the available off-chip memory bandwidth.

Moreover, we are investigating the possibility of integrating

a completely automated design flow with existing industry-

standard frameworks.

643



CIFAR-10
USPS

tim
e 

[m
s]

0

0.05

0.10

0.15

0.20

image batch size

0 5 10 15 20 25 30 35 40 45 50

Fig. 7. Average time to process an image as the number of the images in
the batch increases. For both CNNs, the high-level pipeline is exploited to
improve the throughput. To improve readability we show the results only up
to a batch of 50 images, as convergence is already reached.
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