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Abstract—The recent years have seen a rapid diffusion of deep
learning algorithms as Convolutional Neural Networks (CNNs),
and as a consequence, an intensification of industrial and
academic research focused on optimizing their implementation.
Different computing architectures have been explored, and
among all of them, FPGAs seem to be a very attractive choice,
since they can deliver sustained performance with high power
efficiency, as CNNs can be directly mapped onto hardware,
and still offer flexibility thanks to their programmability.

In this paper, we present an end-to-end framework to
implement CNNs using a dataflow acceleration methodology.
The resulting spatial accelerator can be scaled in size if enough
resources are available and can exploit both intra- and inter-
layers parallelism. We integrate the proposed framework with
the deep learning engine Caffe, meaning that we are able to
generate the accelerator starting from a Caffe model. We also
provide cloud integration of such framework, enabling users
to synthesize and deploy the accelerator on the Amazon F1
instances.

Index Terms—Convolutional Neural Networks, Dataflow Ar-
chitectures, Cloud-based acceleration, FPGA

It is undeniable that we are currently assisting at the
artificial intelligence revolution of Artificial Neural Network
(ANN) algorithms, commonly referred to as deep learning.
Indeed, thanks to their impressive results, they are rapidly
growing in popularity and seeing massive adoption in many
fields, demonstrated by the interest of industry leaders as
Facebook [1], Google [2] and Baidu [3], that are integrating
deep learning in their core businesses. Among the different
ANN algorithms, particularly relevant are Convolutional
Neural Networks (CNNs), that today are the de facto state
of the art for visual recognition and classification [4], [5],
[6], [7], and are successfully applied also in many other
fields [8], [9]. CNNs essentially mimic the behavior of
biological neurons in the Primary Visual Cortex, by applying
consecutive convolution filters on the input data to extract
features at an increasing level of abstraction, used then for
classification, emulating the receptive field of such neurons.

With the improvements in accuracy and the refinements
of the CNN models, size and complexity of the resulting
networks are also increasing. As CPUs are basically no
longer a viable alternative, many works have focused on ex-

ploiting GPUs to implement CNNs [4], [10], [11]. However,
GPUs power consumption can be prohibitive, especially at
the datacenter level [12]. For this reason, recently academia
and industry have started exploring less conventional op-
tions as FPGAs [13], [14], [15], [16], [17], [18] or ASICs
[19], [20] to cope with the increasing computational and
energy efficiency requirements. In particular, FPGAs offer
an interesting compromise between hardware and software
thanks to their reconfigurability, being more flexible than
ASICs but still highly energy efficient. Indeed, they have
shown the potential to become the platform of choice for
deep learning acceleration [21], and even to perform better
than recent ASIC solutions [22].

The CNN computational pattern is mainly dataflow-
based and presents very few control structures, and while
implementing CNNs requires high computational power, as
previously stated, it also offers great potential for mas-
sive parallelization and data reuse. The reconfigurability
of FPGAs enables the possibility of exploiting these op-
portunities, especially if the synthesized architecture is a
dataflow, spatially distributed architecture, that better suits
the characteristics of both FPGAs as well as CNNs. Nev-
ertheless, albeit FPGAs are a very promising candidate for
CNN inference acceleration, the process of designing and
deploying hardware accelerators is still a hard and complex
task that requires expertise in FPGA programming and
knowledge of hardware design tools. As far as we know,
only one work [16] in literature offers integration with
an industry standard deep learning library, Caffe [23], to
alleviate this issue. However, this work still requires users
to have physical access to FPGA devices, that given their
prohibitive cost cannot always be assumed to be the case.
Recently, Amazon expanded its cloud offerings including
also FPGAs [24]. This presents a great opportunity since
FPGA-based CNN accelerators can now be deployed in the
cloud, with no need for physical access (nor ownership) of
the devices. However, to the best of our knowledge, there is
no automated framework in the literature that allows the user
to deploy an FPGA-based CNN accelerator in the cloud.

Given the presented context, we can now summarize the
contribution of this paper as follows:

• We implement an end-to-end framework that is fully in-
tegrated with the industry standard Caffe, and therefore
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allow to use Caffe models as input, completely avoiding
the hassle of FPGA programming. This framework is
also integrated with the Amazon AWS F1 instances
and is, therefore, therefore, able to deploy the resulting
CNN in the cloud, dramatically increasing the use case
scenarios for FPGAs in this space.

• We propose an FPGA-based spatial accelerator for
CNNs inference, consisting in a distributed dataflow
architecture of simple and independent elements com-
municating over FIFOs. This accelerator can exploit
different level of parallelism, and can theoretically scale
in size, according to the available FPGA resources. The
proposed methodology builds upon the previous work
presented in [25].

1. Related Work

Several recent works in literature aim at providing a
solution for FPGA-based CNN acceleration.

In [13] the authors present a CNN accelerator that is
synthesized via High Level Synthesis (HLS). They focus
on optimizing the communication exploiting on-chip reuse
buffering, and the computation performing loop transforma-
tions as tiling, unrolling and pipelining. They also propose
a performance evaluation mechanism based on the Roofline
model, that allows for the selection of the best implemen-
tation in the solution space.

The work in [14] provides a Verilog-based CNN acceler-
ator that can exploit inter-output parallelism, i.e. where the
computation of the different feature maps within a convolu-
tional layer is parallelized and tiling is applied to reduce the
overall memory footprint as done in [13]. Data quantization
is performed to reduce bandwidth requirements and resource
utilization, with negligible impact on the resulting accuracy.

The authors of [15] propose an Open-CL accelerator,
which implements the convolutional layers as matrix multi-
plications, flattening and rearranging the input feature maps.
Also, they provide a methodology to find the accelerator’s
hyperparameters that minimize the total CNN execution time
under bandwidth and resource constraints.

The approach proposed in [18] employs the three clas-
sical loop optimizations, namely unrolling, tiling, and in-
terchange, to optimize the resulting CNN implementation.
The authors provide an in-depth analysis of the impact of
these transformations and elaborate an analytical model that
can be used to find what loop transformations to apply
and to which extent. A uniform systolic architecture of
Processing Elements (PEs) is then used to implement the
entire network.

In [17] it is presented an automation flow that starts
from a C/C++ description of the computation. The resulting
accelerator is a fine-grained 2-D systolic array designed to
improve timing and exploit data reuse. The authors also
provide an analytical model for resource utilization, as well
as a model for performance, and propose a 2-phase design
space exploration mechanism where the first phase optimize
the CNN design, while the second phase perform platform-
specific optimizations.

Caffeine, presented in [16], is a framework that propose
a unified matrix multiplication representation of both the
convolutional and fully-connected layers, implementing the
resulting accelerator as an HLS-generated systolic array. The
framework is fully integrated with Caffe and therefore allow
for the synthesis on FPGA of Caffe models.

The systolic designs presented in [16], [17], [18] can
be compared to our dataflow architecture, in the sense that
they spatially distribute the computation onto smaller PEs
as we do in this work. However, none of these approaches
explicitly exploit the dataflow computation pattern of CNNs
providing a tailored spatial architecture. Moreover, among
all the presented works, only [15], [16], [17] provide an
automated framework to implement CNNs from a high-level
specification. However, only [16] is integrated with an in-
dustry standard deep learning library. No works in literature
instead implement and evaluate cloud-based acceleration. To
the best of our knowledge, this work is the first step in that
direction.

2. CNN Overview

Convolutional Neural Networks (CNNs) extends from
ANNs and are first inspired by neuroscience [26]. After over
twenty years of evolution, started by the work of professor
Yann LeCun in the late 1990s [27], CNNs begun to attract
the attention of industry and academia when in 2012 a team
of researchers from the University of Toronto outperformed
the competition by a substantial margin in the ImageNet
challenge [4]. From there, CNNs have rapidly become the
state of the art in visual recognition and classification [5],
[6], [7], finding applications also in other fields as text
classification [8] and recommendation systems [9].

The structure of a CNN can be summarized as a config-
urable chain of multiple and different layers, whose purpose
is first to extract the relevant features from the structured
input data, and then perform classification of the input based
on these features. We can, therefore, identify two separate
phases within a CNN, each characterized by different kinds
of layers. The first stage is the features extraction, and
is composed of alternating convolutional and sub-sampling
layers. In this phase, the chain of layers extracts more
and more abstract features from the input data, relying on
the processing made by the previous layers. At first, the
features extracted are simple lines, circles, squares, and
become increasingly more complex as data flow deeper
in the network (an example being shown in Figure 2).
These features are encoded in feature maps. The second
stage is the classification and is implemented by a classical
Multi-Layer Perceptron (MLP), a fully-connected network
of simple neurons. The MLP takes as input the feature
maps extracted by the previous stage, and classify the input
accordingly. We will now describe more in detail the distinct
layers that we can find in CNNs. Figure 1 depicts a generic
CNN architecture.
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Figure 1. Convolutional Neural Network structure. We can separate the network into two parts: the features extraction, composed of alternating convolutional
and sub-sampling layers, and the classification, implemented as a MLP.

Figure 2. Example of increasingly more abstract features, from left to right,
identified during the features extraction stage.

2.1. Convolutional Layer

Convolutional layers apply a series of F filters (referred
to also as kernels) on the input grid, with the purpose
of detecting features in the presented data. From a high-
level perspective, each filter f ∈ F is convolved across the
input data, producing the corresponding output. Input and
output features are encoded as feature maps. Each filter f is
automatically determined during the learning phase through
weight adjustments, trained to activate when a specific fea-
ture at some spatial position in the input is detected. The
corresponding equation to compute each element (i, j) of
the output feature map φ can be written as:

oi, j,φ =

Mf

∑
m=0

Nf

∑
n=0

(wm,n,φ · xi+m, j+n)+bφ (1)

where Mf and Nf are the width and the height of the filter
f , x represent the input data, w the weights, and bφ is an
optional bias. The dimension of the resulting feature map
will be reduced according to the following equation:

ωnew = ωold−ω f +1

γnew = γold− γ f +1
(2)

with ω representing the height, and γ the width, and with
ω f and γ f being respectively the height and width of the
given filter f . A convolutional layer allow also for the
selection of other hyperparameters, like stride and zero-
padding. Moreover, to emphasize relevant features, the non-
linearity of the output may also be increased applying the
Rectified Linear Unit (ReLU) function f (x) = max(0,x),
or other activation functions like sigmoid f (x) = 1

1+e−x or

hyperbolic tangent f (x) = tanh(x). In general, ReLU is
preferable to the other functions as it can train the CNN
faster [4] without significant accuracy penalty.

2.2. Sub-sampling Layer

A sub-sampling layer (know also as pooling layer) is
usually inserted in between two convolutional layers and
its function is to lower the amount of data to be stored
in memory (and inherently the amount of computation),
reducing the spatial size of the feature maps, providing
also a form translational invariance of the features, as well
as helping controlling overfitting. Sub-sampling layers are
implemented similarly to convolutional layers, with filters
swiped over the input data. The difference is in the opera-
tions applied, that usually consists in substituting the input
sub-matrix with its average or its maximum (max-pooling).
The most common size for a sub-sampling filter is 2×2, that
is also the smallest. As done for the convolutional layers,
we can express the reduction in size of the output feature
maps for a sub-sampling layer as:

ωnew =

⌈
ωold−ω f

ρ

⌉
+1

γnew =

⌈
γold− γ f

ρ

⌉
+1

(3)

where ρ represent the amplitude of the sliding window of
the sub-sampling filters.

2.3. Fully-connected Layer

After the feature extraction stage has taken place, the
extracted features are passed to a MLP for the classification,
composed of multiple fully-connected layers, where each
neuron of a layer is connected with all the neurons of
the previous and subsequent layers. The output of a single
neuron l consists of a weighted linear combination of the
neurons of the previous layer:

ol =
H

∑
h=0

(wh,l · xh)+bl (4)

with H the neurons of the previous layer, w representing the
weight of the link between the neuron with index h∈H and
l, xh the neuron of the previous layer, and bl an optional bias.
The last fully-connected layer contains as many neurons as
the classes to be recognized. A normalization layer, usually
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Figure 3. Condor framework multi-tier architecture.

implemented by means of a LogSo f tMax operator σ , is
sometimes appended to the final layer:

σ(ooo)y =
eoooy

∑Y
y=1 eoooy

f or y = 1, . . . ,Y (5)

This operation enforces the X values of the output vector
ooo to lie in the range [0,1] and to sum up to 1, such that
they can be interpreted as the the probability of the input to
belong to a certain class.

3. Proposed Automation Framework

We now present the architecture of the proposed frame-
work, including the different possibilities concerning inte-
gration and deployment, in Section 3.1, an overview of
the hardware accelerator design in Section 3.2, and the
implemented design automation flow in Section 3.3.

3.1. Framework Architecture

Figure 3 illustrates the architecture of the framework,
that is a multi-tier architecture consisting of three layers: the
frontend, the core logic, and the backend. The framework is
mainly developed using Python, although we also rely on C
for a restricted number of functionalities, mainly to interact
with the Xilinx toolchain. We called this framework Condor
(CONvolutional neural networks Dataflow Optimization us-
ing Reconfigurable hardware). We now provide an overview
of the functionalities of each tier.

3.1.1. Frontend. The main goal of the top tier, the frontend,
is to collect all the necessary input to allow the design of
the accelerator. There are currently two supported methods:
the user can either specify all the input files manually,
according to the Condor internal specification or use a pre-
trained Caffe model, providing the caffemodel and prototxt

files. In the future, more input methods will be added. We
plan to support other popular deep learning libraries, such
as TensorFlow or Caffe2, and we are considering adding
support to the ONNX format1.
The input consists of:

• Network Representation: the core-logic tier uses an in-
ternal JSON to describe the topology of the network. It
resembles the caffe prototxt file but contains more infor-
mation about the underlying hardware of the accelerator,
such as the desired board, the operating frequency and
desired level of parallelism of each layer. The user can
either specify this file manually or provide the prototxt
file of a pre-trained caffe model.

• Weights: users must also provide all the weights and bi-
ases of the convolutional and fully-connected layers. This
is needed as we do not perform the training step, we focus
on the acceleration and optimization of the sole CNN
inference. Weights and biases are kept as external files and
are loaded dynamically at runtime. This enables the update
of the network (for instance if better accuracy is achieved)
without the need for re-synthesizing the accelerator. As
per the network representation, weights and biases can be
expressed manually or automatically extracted from the
caffemodel file.

• Deployment Option: users must select beforehand where
to deploy the resulting accelerator, either specifying one of
the supported boards or choose to deploy the accelerator
on an Amazon F1 instance. Different actions will be taken
by the next tiers depending on which option is selected.

3.1.2. Core Logic. This tier contains the main logic of
the framework. It uses the input provided by the frontend
to create a hardware accelerator that exploits the dataflow
computational pattern and is tailored to the selected deploy-
ment option. The intermediate result of this tier is a fully
packaged Vivado IP. The layer consists of the following
logical modules:

• Vivado Wrapper: this module interacts with Vivado and
Vivado HLS in order to provide a high-level python API
to the above modules.

• Layer Creation: this module is responsible for creating
each layer that characterizes the input CNN. The Condor-
specific JSON file (the output of the frontend), containing
the network representation, is analyzed and used to map
the different layers into hardware according to the method-
ology presented in Section 3.2. Each layer is packaged as
a Vivado IP.

• Network Creation: this module connects all the created
layers to derive the hardware accelerator for the CNN un-
der analysis. Using Vivado IP Integrator, the IPs packaged
by the previous module are connected to form the final
accelerator IP.

3.1.3. Backend. To allow developers to use the final ac-
celerator to optimize their applications and take advantage
of FPGA platforms without any prior knowledge required,

1. https://onnx.ai
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Figure 4. A scheme representing the proposed hardware accelerator struc-
ture.

we have decided to integrate the Condor framework with
SDAccel. SDAccel is a software development environment
targeting FPGA platforms that enables a CPU/GPU-like
development experience. With this integration, it is possible
to deploy the resulting accelerator on-premise (on a locally
accessible board) or in the cloud using the F1 instances.
In the first case, the framework uses the Xilinx OpenCL
Compiler (XOCC) to produce the Xilinx OpenCL Compute
Unit Binary (xclbin) file needed to configure the target board
directly. In the second case, it is not possible to load a
bitstream directly onto the FPGAs of an F1 instance; it is
instead necessary to create an Amazon FPGA Image (AFI)
first. The AFI creation process can be done on-premise with
Xilinx tools, but it requires special licenses and additional
setup2 which may not be accessible to machine learning
practitioners. Therefore, for usability and accessibility rea-
sons we have decided to require users to run the Condor
framework inside an FPGA Developer Amazon Machine
Image, which provides the aforementioned licenses at no
additional cost. In this way, we can hide all the complexity
and cost of FPGA development to the end-user and pro-
vide an end-to-end process that starts from a high-level
description of a CNN and produces an AFI containing the
hardware accelerator. We do not entirely exclude however
the possibility to create the AFI on-premise, we just do not
investigate this option. The end-user might still be able to
follow this approach with some tweaking of the Condor
framework.

3.2. Hardware Design

The focus of the work proposed in this paper is mainly
on the automation and integration with industrial tools of
what we have previously done by hand in [25]. In that
work, we propose an architectural template that exploits the
dataflow computational pattern distributing data movement
and actual computation to a set of independent modules
that communicate through FIFO channels using blocking
reads and writes. As the work evolved though, we had
to implement a set of structural changes to extend the
applicability of our acceleration methodology. Albeit the
automation framework is fully functional and these changes

2. https://github.com/aws/aws-fpga/blob/master/hdk/docs/on_premise_
licensing_help.md

are mostly already implemented, the extension process is
still in development, and we plan to discuss and evaluate the
refined architecture in greater detail in a future publication.
We here provide an overview of the current version.

The accelerator is a composition of a set of building
blocks with different functionalities: PEs, that implement the
actual computation performed by the various CNN layers,
filters, that feed the PEs and implement on-chip buffering
for the features extraction layers using non-uniform memory
partitioning [28], and FIFOs, that are used to implement the
communication channels between PEs and filters, as well as
to perform the non-uniform memory partitioning together
with the filters, as we will discuss shortly. We interface
our accelerator with the on-board memory using a custom
datamover that exchanges data with the accelerator using
streaming connections. We rely on the on-board memory to
transfer input, output, weights and store partial results when
they do not fit on the on-chip storage. Figure 4 provides a
visualization of the proposed hardware accelerator template.

A PE can be used to implement multiple subsequent lay-
ers of the CNN and is concurrently active together with all
the PEs synthesized. More specifically, the PEs are arranged
as a high-level pipeline where the output of a PE is the input
to the next one. In practice though, each PE also commu-
nicates with our custom datamover to receive the weights
and exchange partial results in case needed. In principle,
we could have a separated PE for every layer of the CNN.
However, for large CNNs, this might not be possible given
the available resources. For this reason, our methodology
includes the possibility to map multiple logical layers onto a
single PE, so long as they implement a similar computation
(that is, we cluster together in a single PE either layers
from the features extraction part or fully-connected layers).
This functionality is achieved with an additional outer loop
that iterates through the implemented layers, and a set of
conditionals to infer which input ports must be read (in
case the window size changes). We can therefore spatially
unfold the accelerator, if enough resources are available, to
implement different layers as separated concurrent PEs, up
to the point where there is a 1:1 mapping of layers onto
PEs, thus exploiting full intra-layer parallelism. Moreover,
we can exploit inter-layer parallelism reading multiple input
feature maps concurrently and computing multiple output
feature maps in parallel, as already done in [25]. Again,
according to the amount of available resources, we can
choose to implement a layer (or a set of layers) as a single-
input/single-output port PE, where input feature maps are
read sequentially and output feature map are equally serially
computed, or increase the level of parallelism reading and
processing multiple feature maps at once.

The memory access pattern for a single input feature
map of a features extraction layer – either convolutional
or sub-sampling – consists of a sliding window that spans
through the entire input, meaning that to compute an output
point a collection of input points must be read together.
This data access pattern presents high data locality, that can
be exploited to reduce the on-chip memory footprint. We
do so using the non-uniform memory partitioning presented
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in [28]. In particular, for each feature map read in parallel
we create a pipeline of filters interleaved by FIFOs. This
collection of pipelines constitutes the memory subsystem
for a features extraction PE. Within a pipeline, each filter
represents an access to the input feature map (a point of
the sliding window) and extract the elements from the input
stream that belong to its data domain, sending them to the
PE. It also sends each element read to the subsequent filter
writing to the FIFO in between them. The FIFOs between
filters realize the on-chip buffering and their size is equal
to the spatial distance between the two accesses that the
filters at each end of the FIFO represent. Such a struc-
ture allows for concurrent reads of all the elements of the
sliding window, without any possibility of on-chip memory
port contention. Moreover, it reduces the on-chip storage
requirements, as only the elements that are spatially located
in between the first and the last access are buffered on-chip,
at any point in time. For this pipeline to work correctly
without stalls, its filters are ordered in lexicographically
inverse order according to the polyhedral model [28]. When
multiple layers are fused together, the memory pipeline is
created considering the layer with the biggest window size
(that translates to a higher number of filters). The FIFOs
size is instead determined considering the layer with the
greatest input feature maps size. A set of conditionals within
the filters then ensures that the pipeline works properly
(correct number of active filters, correct filtering conditions)
according to the currently “active” layer (the one that the
PE is currently computing).

At current times, we implement fully-connected layers
very similarly to what we have done previously in [25]. We
will make some further considerations on how we imple-
ment these layers when we discuss the design automation
flow in the following section.

3.3. Design Automation Flow

To have a better understanding of how the final ac-
celerator is created, we here provide a description of the
implemented automation flow. As stated previously, the user
should specify the necessary input either as a pre-trained
caffe model, providing the prototxt and caffemodel files, or
use the Condor-specific format for network and weights.
The output of the framework will either be an FPGA binary
file that can be loaded on local hardware, or an AFI, that
enables users to deploy the accelerator in the cloud, using
the AWS F1 instances.
The proposed design automation flow consists of the fol-
lowing steps:

1) Input Analysis: the input files provided by the user
are inspected in order to extract weights and network
representation. The files from an external deep learning
library, only Caffe as of now, are translated in the Condor
format.

2) Design Space Exploration: as specified in Section 3.2
the accelerator has the ability to exploit different level
of parallelism. In this phase, given the available FPGA
resources, different configurations are explored to find

the optimal tradeoff between resource consumption and
performance. This phase is still not automated and there-
fore requires human intervention, but in the future, it
will be performed automatically relying on resource
consumption and performance models that are still under
development.

3) Creation of the features extraction stage: Once we
have the desired topology and all the weights, it is
possible to begin the creation of the different layers,
starting with the convolutional and sub-sampling layers.
As specified before, each layer is composed of filters,
FIFOs, and a PE. The following steps are performed for
every layer in the features extraction stage:

a Characterization of the PE: the C code performing
the computation of the layer is automatically gener-
ated, and the PE is synthesized via Vivado HLS.

b Characterization of the filters: the filters are de-
signed in order to exploit the dataflow computational
pattern of convolutions. Each filter is associated to a
set of inequalities that are used to select which of the
elements present in the input stream of the filter have
to be sent to the PE to perform the current computation
(convolution or pooling). Given the size of the sliding
window and the size of the input image, the code for
the filters is automatically generated and the filters are
synthesized with Vivado HLS.

c Creation of the layer: an empty Vivado IP Integrator
project is created, the filters are first linked together
to form the memory subsystem and then connected to
the PE to form the final structure of the layer. Finally,
the layer is packaged as a Vivado IP.

4) Creation of the classification stage: the structure of
a fully-connected layer is similar to the structure of a
convolutional layer, due to the similar output dependence
on all the input values. In fact, a fully-connected layer
performs Multiply-and-Accumulation (MAC) operations
on all the input with the given weights, and this kind of
execution can be described as a 1× 1 convolution. The
unitary window size of this layer makes the memory sub-
system of the classification layers not needed. Moreover,
due to the high number of input and output channel, if
the layer is completely parallelized, it would increase
too much the DSPs utilization. In order to face this
two issues, we decided to implement a fully-connected
layer as a single-input/single-output convolutional PE.
Therefore, the only steps performed to create the fully-
connected layers are the generation of the C code of the
related PE and its synthesis using Vivado HLS.

5) Connection of the layers: all the IPs of the layers
packaged in the previous steps are linked together fol-
lowing the specified topology to create the final CNN
accelerator.

6) Integration with SDAccel: in order to allow developers
to use the accelerator in SDAccel we need to express it
as an OpenCL Kernel. An OpenCL kernel is the compu-
tational foundation of every OpenCL application since it
defines the code that will be accelerated in hardware.
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Normally, kernels in SDAccel are express directly in
C/C++ using the OpenCL API. However, the Xilinx tool
allows also for the possibility of using external RTL
specifications as kernels. We use this opportunity in our
approach, requiring the following additional steps:

a Creation of the kernel description XML file: in
order for our IP to be used as an SDAccel kernel
we need to create a kernel description XML file. This
file contains basic information of the kernel such as
the name and vendor as well as the communication
interface with the host via an AXI4 master port and
an AXI4-Lite slave port.

b Package as Xilinx Object file: the final step is to
package the IP of the accelerator and the kernel XML
together into a Xilinx Object file (.xo), so it can be
processed by the SDAccel compiler.

7) Deployment on board: the final step of the framework
is to generate the xclbin file. The xclbin file is a binary
library of kernel compute units, in our case only of the
single accelerator, that will be loaded together into an
OpenCL context for a specific device. The kernel binaries
are generated using XOCC, that creates custom logic
based on the characteristics of the selected target device.
We also generate and provide the user with a default
host code to run and test the performance of the resulting
accelerator. The user can use this code as is or edit and
adapt it according to her needs.

8) Creation of the AFI (for cloud deployment only):
running the accelerator on F1 instances requires some
additional steps to be performed. First, as in the previ-
ous step the xclbin is synthesized targeting the Xilinx
UltraScale+ FPGA devices used on the F1 instances.
Then, using the AWS command line interface the AFI
generation process is started. The framework automati-
cally generates the AFI inside a user-specified Amazon
S3 Bucket and returns the AFI global ID, which is used
to refer to an AFI from within an F1 instance. Once the
AFI generation completes, it can be loaded on an FPGA
slot of an F1 instance and executed.

4. Framework Evaluation

We evaluate the proposed automated framework de-
ploying two CNNs on the F1 instances, with two dif-
ferent objectives. The first test case is the CNN used in
[25] trained on the USPS dataset, and we refer to it as
TC1. The achieved frequency is 100MHz, and the gen-
erated network processes each feature map sequentially
but can exploit full intra-layers parallelism. With this test,
our purpose was to validate the hardware generation pro-
cess of Condor with respect to what we have previously
done by hand. The second test case is LeNet, generated
starting from a Caffe model3 with an achieved frequency
of 180MHz and again without parallel processing of the
feature maps but full intra-layers parallelism. For LeNet,
the objective was to validate the integration with Caffe.

3. https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet.prototxt
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Figure 5. Mean time to process an image in relation to the images batch
size.

The results regarding resource occupation, performance and
power efficiency are reported in Table 1. The reader may
find the tested AFIs and a guide on how to deploy them
at https://bitbucket.org/necst/condor-aws-raw2018. Figure 5
shows instead how, in line to what we have experimented
in our previous work, using the proposed architecture the
mean time to process an image decreases as we increase
the batch size, until convergence is reached, due to the high-
level pipeline created exploiting the intra-layer parallelism.
For both cases convergence is reached approximately when
the batch size is bigger than the total number of layers of
the network. As stated in Section 3.2, the refinements of
the hardware design are still in process of development. We
here report preliminary results of the sole features extraction
part for TC1, LeNet and VGG-16, in Table 2. We are still
investigating the optimization of the classification part. For
instance, the fully-connected layers of VGG-16 would not
be synthesizable with the current methodology. We intend
to perform a more rigorous experimentation in the future,
once the design methodology improvements are completed.

5. Conclusions and Future Work

In this paper, we have presented an end-to-end frame-
work for the automatic dataflow implementation of CNNs
on FPGAs, which implements the acceleration methodology
first presented in [25]. This framework is integrated with
Caffe and can be either used to deploy the implemented
network on-premise with SDAccel or in the cloud using
the Amazon F1 instances. We also provided an overview of
the design improvements done to [25], with the caveat that
the work is still developing and is not complete yet. Future
work will address the finalization of the hardware design
improvements, the integration of the proposed framework
with other deep learning libraries and the automation of the
design space exploration.
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