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Abstract—Convolutional Neural Network (CNN) is a deep
learning algorithm extended from Artificial Neural Network
(ANN) and widely used for image classification and recognition,
thanks to its invariance to distortions. The recent rapid growth of
applications based on deep learning algorithms, especially in the
context of Big Data analytics, has dramatically improved both
industrial and academic research and exploration of optimized
implementations of CNNs on accelerators such as GPUs, FPGAs
and ASICs, as general purpose processors can hardly meet the
ever increasing performance and energy-efficiency requirements.
FPGAs in particular are one of the most attractive alternative,
as they allow the exploitation of the implicit parallelism of the
algorithm and the acceleration of the different layers of a CNN
with custom optimizations, while retaining extreme flexibility
thanks to their reconfigurability.

In this work, we propose a methodology to implement CNNs
on FPGAs in a modular, scalable way. This is done by exploiting
the dataflow pattern of convolutions, using an approach derived
from previous work on the acceleration of Iterative Stencil Loops
(ISLs), a computational pattern that shares some characteristics
with convolutions. Furthermore, this approach allows the imple-
mentation of a high-level pipeline between the different network
layers, resulting in an increase of the overall performance when
the CNN is employed to process batches of multiple images, as
it would happen in real-life scenarios.

Index Terms—Field Programmable Gate Arrays, Convolu-
tional Neural Networks, Dataflow Architectures

I. INTRODUCTION

Inspired by biological vision systems, Convolutional Neural

Network (CNN) is a well-known deep learning algorithm

extended from Artificial Neural Network (ANN) that has

demonstrated significant success in various applications, such

as image search engines in data centers, video surveillance and

mobile robot vision [1, 2, 3, 4], achieving far higher accuracy

than traditional algorithms for computer vision. Indeed, CNNs

are currently considered the state-of-the-art solution for visual

recognition and classification, and are attracting a growing

interest from both academia and industry [5, 6]. In a nutshell,

CNN applies consecutive convolution filters on the input image

in order to extract features at increasing levels of abstraction.

Then, such features will be used for the classification.

As the CNN models improve and their accuracy increases,

so network size and computational complexity are rapidly

growing. Thus, the current requirements in terms of both

performance and energy-efficiency can be hardly met by

general purpose processors, effectively shifting the research

interest towards more specialized hardware accelerators, such

as GPUs, FPGAs, and even ASICs, which have been indeed

widely explored in the last years to optimize CNN designs

[7, 8, 9, 10]. In particular, FPGA-based accelerators recently

gained substantial attention due to their advantages of perfor-

mance and high energy-efficiency, as well as a lower power

consumption compared to GPUs, and a higher flexibility than

ASICs, thanks to their reconfigurability [11, 12, 13, 14].

Previous work on FPGA-based implementation of CNNs

mostly focus on the acceleration of the convolutional layer

[10, 14, 12], being the most compute-intensive layer, or

propose solutions that do not fully exploit the suitability of

CNNs for a dataflow implementation [15, 16]. In the first case,

the proposed approaches introduce a non-negligible commu-

nication overhead due to the need for data exchange between

accelerated and unaccelerated layers, effectively diminishing

the overall performance gains. In the second, the absence of a

pure dataflow implementation results in an underutilization of

the inherent parallelism of FPGAs, a suboptimal exploitation

of the on-chip memory, and the inability to process batches of

multiple images efficiently, which is instead the common use

case in real-life scenarios.

In this work, we propose a methodology to accelerate CNN

designs on FPGAs with a dataflow implementation, in a

modular, scalable way. The approach builds upon previous

work on the acceleration of Iterative Stencil Loops (ISLs)

[17, 18], a computational pattern that shares some charac-

teristics with convolutions, and adapts both the ISL-centric

proposed hardware accelerator and its concepts to suit the

implementation of CNNs. In particular, the paper provides the

following contributions:

• An acceleration methodology of CNN designs on FPGAs

that exploits the dataflow computation pattern, scales

up the size of each layer from single-input-port/single-

output-port to fully parallel if enough resources are

available, and is able to implement a high-level pipeline

between the different network layers;

• An experimental evaluation of the proposed methodology

with the implementation of 2 CNNs of different sizes on

a Xilinx Virtex-7 FPGA, trained and tested respectively

with the USPS and CIFAR-10 [19] datasets.

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-0-7695-6149-3/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.44

90

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-3408-0/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.44

90



INPUT
H = 16 - W = 16 - C = 1

Feature Maps
H0 = 12 - W0 = 12 - C0 = 6

Feature Maps
H1 = 6 - W1 = 6 - C1 = 6

Feature Maps
H2 = 2 - W2 = 2 - C2 = 16

Neurons
J0 = 10 Output

Convolutional
layer

Sub-sampling
layer

Convolutional
layer

Linear
layer

Classification
layer

Fig. 1. Convolutional Neural Network structure.

The remainder of the paper is organized as follows. Sec-

tion II provides the necessary background, while Section III

discusses the related work. Then, Section IV describes the

proposed acceleration methodology, and Section V presents

the experimental evaluation, before ending the paper in Section

VI with the concluding remarks and an outline of future work.

II. BACKGROUND

This section presents the necessary background, first ex-

plaining what CNNs are and how they work, then focusing on

the description of the structure of a Streaming Stencil Time-

step (SST), which lays the basis of the proposed work.

A. Convolutional Neural Network

Convolutional Neural Networks were introduced in the

’90s by Professor Yann LeCun [20]. This machine learning

algorithm is a variant of ANN specifically tailored for image

analysis and other similar 2D-structured data. Indeed, the

very first application of CNNs consisted in recognizing hand-

written digits. As the time went by, CNN usage resulted

successful in many applications, like artificial vision, big data

analysis and so on [1, 2, 3, 4]. As a consequence, CNNs

now represent the state of the art in image recognition and

classification.

CNN structure is a configurable chain of multiple layers,

whose purpose is to first extract features from the image and

then classify it. For this reason, the CNN structure may be

divided into two main stages: the features extraction stage and

the classification one, respectively. Figure 1 shows the overall

architecture of a CNN.

The purpose of the features extraction stage, whose im-

plementation relies on a particular type of ANN, is to identify

and extract more and more complex features within the image.

Such features are then collected into the so-called feature
maps. In particular, the features extractor stage is defined as a

chain of two different layers: the convolutional layer, and the

sub-sampling (or pooling) one.

In order to extract relevant features from the image, the

convolutional layer applies a series of K filters (or kernels)

on the image. The output of each filter is a feature map.

More generally, the input of a convolutional layer is a 3D

volume defined by the following parameters: H , W , and C. H
represents the height of the volume, W its width, C its depth.

In particular, C refers to the number of the color channels

(when we consider the input image) or feature maps produced

by the previous layer. For each filter k, the convolutional layer

applies a convolution defined as follows:

oi,j,k =

Hk∑

h=0

Wk∑

m=0

Ck∑

c=0

(wh,m,c · xi+h,j+m,c) + bk (1)

where the filter is represented by a Hk ×Wk × Ck matrix

of weights (H > Hk ∧ W > Wk ∧ C ≥ Ck), bk is

a bias, i and j are the coordinates of the current pixel x
in the input volume belonging to channel c. Additionally,

the convolutional layer may apply a nonlinear function, e.g.

tanh() or max(0, x), on each value in the output volume.

Moreover, further hyperparameters may be configured as well,

like stride S and zero-padding P .

The goal of sub-sampling layer is to reduce the size of

the data produced by the previous convolutional layer, while

maintaining the most relevant features. Indeed, usually the sub-

sampling layer is inserted between two convolutional layers.

This layer swipes a filter on the volume in order to cluster

locally connected data. More technically, such filter is applied

on each channel separately and leverages on either a max-
pooling or mean-pooling function, which substitutes an input

submatrix with its maximum value or its mean, respectively.

The classification stage is implemented by means of a

classical Fully-connected Network (FCN), called Multi-Layer

Perceptron (MLP). This stages receives the input from the last

layer (either convolutional or sub-sampling) in the features

extraction stage, and processes it in order to compute the

affinity of the input image with respect to the classification

classes. This stage is structured as a chain of linear layers,

which may be followed by an optional final normalization

operator.

The linear layer is composed by J simple neurons (called

perceptrons). These neurons are in charge of aggregate the in-

formation deriving from the previous layer. The output values

are therefore computed as a weighted linear combination of

such neurons:

oj =
I∑

i=0

(wi,j · xi) + bj (2)
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Fig. 2. A generic SST with the conceptual separation between memory system
and computing system.

where wi,j represent the weights, xi the neurons from the

previous layer, and bj a bias. The last linear layer will produce

a number of neurons equal to the number of classification

classes.

Finally, the normalization operator receives the output of

the last linear layer and computes the affinity of the input to the

classification classes as a percentage value. More technically,

this operator is implemented by means of a LogSoftMax
operator σ:

σj =
exj

∑K
k=1 e

xk

for j = 1, . . . ,K (3)

where xj is the output of the last linear layer. This operator

enforces the K values of the output to lie in range [0, 1] and

to sum up to 1. In this way, the normalization operator output

can be interpreted as the probability of the input to belong to

a certain class.

B. Streaming Stencil Time-step

As described in [17], an SST is an accelerator of a single

ISL time-step, replicated multiple times and then arranged in

a long queue of replicas to obtain the ISL-centric hardware

accelerator proposed in [17]. Since convolutions are somehow

amenable to single ISL time-step, in this work we base the

acceleration of the CNN layers on the structure of an SST, and

exploit the ideas of the work in [17] to derive the proposed

dataflow accelerator of CNNs. Therefore, in order to provide

the necessary background to easily read through the rest of

this paper, we present an overview on the structure of an SST.

Within an SST, we can identify a computing system and a

memory system, as depicted in Figure 2. The computing system
is composed by a collection of modules that perform the

actual computation taking data from the memory system. The

memory system consists instead of a series of chains of filters
interconnected via FIFO channels, one chain for every distinct

input array. Each chain receives as input a single data stream,

the array, and each filter represents the different array accesses

needed from that array to update a single point of the ISL

computation. Each filter reads any existing data element from

its preceding FIFO, sending it always to the subsequent one in

the chain, if any, and, when the correct data element arrives, it

sends it to the computing system to allow it to produce output.

The way in which this filters are interconnected ensures that

the data is read only once from the off-chip memory and, at

the same time, allows more concurrent accesses from the same

array, also optimizing the memory resource consumption on

the FPGA, that is indeed the minimum possible to achieve full
buffering, in which data is stored on the on-chip memory until

all the computations depending on it have completed.

III. RELATED WORK

The computation pattern of CNNs is well suited for hard-

ware acceleration, and indeed various accelerators design have

been proposed to optimize the implementation of CNNs.

Several works presents the acceleration of CNNs using GPUs

([2], [21], [22]), however recent works are also focusing on

FPGA-based implementations. The various approaches found

in literature have a common aim, which is to exploit data

reuse/locality and parallelism to accelerate the CNN compu-

tation.

Farabet et al. propose a FPGA based processor for CNN

implementation [14]. The proposed processor uses a dedicated

memory structure and a custom Vectorial Arithmetic and Logic

Unit (VALU) to take advantage of the high number of DSPs

offered by the FPGA board. An efficient convolution design

is also used to speed up the most critical part of the CNN.

Sankaradas et al. propose a “massively parallel, pro-

grammable coprocessor for CNNs” in [9]. The main features

of the proposed coprocessor are its coupling with a high

bandwidth off-chip memory and the packing of multiple data

words into each memory operation. In this way, the authors

implemented a stateful coprocessor able to retain large inter-

mediate states on the off-chip memory. The proposed design

obtained a performance of 3.4 Giga Multiply-Accumulate

operations per second (GMACs), 31x faster than the software

implementation on a 2.2GHz AMD Opteron processor.

Various work focused in particular on the memory band-

width optimization with polyhedral model-based techniques

and optimized buffer accesses to reduce the number of off-

chip memory operations.

An efficient memory-centric design is shown in [7]. The

proposed template for CNNs improves the performance with-

out increasing the needed memory bandwidth, thanks to an

optimized scheduling for data locality and flexible data reuse

buffers. Moreover, this approach shows that it is possible

to minimize the needed on-chip memory, obtaining a 13x

resources reduction without decreasing the performance.

Zhang et al. propose an analytical scheme for the Design

Space Exploration (DSE) to accelerate CNNs. The analysis

process quantifies the computing throughput and the required

memory bandwidth of the CNN design, with respect to various

optimization techniques such as loop tiling. The Roofline

Model [23] is then used to identify the solution that provides

the best performance. The proposed case study reached 61.62

GFLOPS on a 100MHz frequency, outperforming the previous

approaches.

The work in [24] presents a CNN implementation on FPGA

for Image-Net large-scale classification. After the analysis of
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state-of-the-art CNN models, the authors show that convolu-

tional layers are computational centric, while Fully-Connected

layers are memory centric. In order to improve the bandwidth

and resource utilization, this work uses data quantization and

an efficient convolver design. The results show just a 0.4%

accuracy loss, and performance for the convolutional layer

and the entire network of respectively 187.8 GOP/s and 137.0

GOP/s, for the implementation of VGG16-SVD on a single

FPGA board.

The previously described works present the accelaration of

CNNs on FPGAs, but the implementation is still manual and

performed by expert hardware designers. Two works, namely

[15] and [16], present instead frameworks for the automated

implementation of CNNs.

The work in [16] proposes a framework to automatically

generate a hardware implementation of CNNs based on the

High Level Synthesis of configurable offline-trained networks.

The framework is developed as a web application that takes the

network parameters and weights, and converts this represen-

tation in a complete hardware implementation of the network.

The work presented in [15] presents Caffeine, an hard-

ware/software codesign library to accelerate an entire CNN on

FPGA. The proposed work focuses on the network computing

and bandwidth optimization by the memory access reorgani-

zation. Moreover, the implemented library provides various

hardware/software definable parameters and is integrated into

the Caffe [25] deep learning framework.

To the best of our knowledge, there are no FPGA-based

acceleration methodologies that fully exploit the dataflow

computation pattern, provide a scalable implementation of

each layer (from single-input-port/single-output-port to fully

parallel that can be adapted to the available resources), and

are able to implement a high-level pipeline within the CNN

layers.

IV. PROPOSED METHODOLOGY

In this section, we present the proposed architecture for

the dataflow acceleration of CNNs, by describing how each

layer is implemented and detailing how a complete network is

constructed. The design is composed of several independent

modules, in order to allow the implementation of different

networks without redesigning the whole system. This feature

will be exploited to automate the implementation of CNNs

on FPGAs with this methodology in future work. Moreover,

a modular architecture allows precise optimizations related to

each particular layer of the network. Figure 4 and Figure 5

show two CNN designs obtained by applying the proposed

approach.

A. Convolutional layer architecture

The convolutional and sub-sampling layer implementations

are here described together, as they share similar memory

access patterns and therefore will mostly use the same memory

and design optimizations.

In order to enable the scalability of the layer and provide the

ability to tune the trade-off between parallelism and resource

consumption, our proposed design for the implementation of

Fig. 3. Schematisation of the design of a convolutional layer. Notice how the
structure resembles the one of an SST, shown in Figure 2.

a convolutional layer is based on a modular and parametric
approach. The convolutional layer accepts IN PORTS in-

put channels at a time, and exposes OUT PORTS output

channels ports. These interfaces can transmit multiple Feature

Maps (FMs) by interleaving the different values over the same

port. The number of IN PORTS and OUT PORTS is

then used as a parameter to instantiate the memory structure
and the computation core, which performs the convolutions

and combine them. Figure 3 shows a schematisation of the

convolutional layer.

The memory structure of the layer is designed in order to

exploit the dataflow computational pattern of convolutions.

The architecture used to transmit and use the input values

over each input channel of the layer is based on the memory
system of an SST, as described before in Section II-B. The

values are moved onto IN PORTS pipelines composed by

a series of filters and FIFO queues, one separate pipeline per

input channel. Within each pipeline, the different filters receive

data from one input port and redirect their values to the next

FIFO or also to a register slice. Scalability with respect to the

data size can be achieved via a memory/bandwidth trade-off, as

described in [18]. The filters and FIFOs are connected in a way

which resembles a sliding window architecture, such that the

pipeline is gradually filled with the values, while the register

slices are used to store and transmit the window values.

These registers will be then read by the computation core. In

this way, after the memory pipeline is filled, the computation
core receives an entire window for each clock cycle. There

are three cases that lead to three different configurations of

the memory structure of a layer i, being i − 1 the previous

layer:

• OUT PORTSi−1 = IN PORTSi,

• OUT PORTSi−1 < IN PORTSi,

• OUT PORTSi−1 > IN PORTSi.

The case in which OUT PORTSi−1 = IN PORTSi is the

trivial one as the output channels of the layer i − 1 and the

input channels of the layer i can be connected directly with no

adjustments. If instead OUT PORTSi−1 < IN PORTSi,

the values can be correctly routed from the output port of

i−1 to the correct input port of i thanks to a demux core that

redirects data to the proper input port of i according to how the
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different FMs are interleaved on the output port of i−1. On the

other hand, if OUT PORTSi−1 > IN PORTSi, the filters

of each input channel of i need to be modified adding an

additional innermost loop to cycle the reads from the different

output channels of i−1 and enlarging the FIFO size to fit the

data of all this channels.

The convolutional layer may also present a stride parameter,

meaning that the convolution window does not slide one pixel

at a time, but skips of some x and y coordinates each time.

This can be implemented also on the filters, by changing the

condition on which the values are redirected to the window

registers. The filters and demux core of the memory structure
have been implemented by means of Vivado HLS [26]. The

memory structure just described fills the registers that contain

the current window, on which the computation core performs

the various convolutions needed. This core is created starting

from a set of parameters, related to the layer structure and the

desired characteristics of the execution. In particular, the core

accepts IN PORTS used to receive IN FM channels, and

exposes OUT PORTS output ports used to send OUT FM
channels to the next layer. Furthermore, the computation core
expects a KW × KH window for each input port, where

KW and KH are respectively the width and height of the

convolution window. If the number of ports is different than

the number of feature maps, the input windows will be related

to a different channel each time, as described earlier.

Algorithm 1 Convolution Layer Pseudocode

foreach (x, y) ∈ Coordinates do
outputs← biases
for i = 0 to IN FM step IN PORTS do

buf ← IN PORTS windows
buf ← buf · weights
outputs← outputs+ reduce(buf)

end for
send outputs on OUT PORTS ports

end for

As for the filters and demux of the memory structure, the

computation core has been implemented using Vivado HLS,

and its pseudocode is shown in Algorithm 1. The kernel has

IN PORTS×(KH×KW ) input ports and OUT PORTS
output ports, all implemented using the Axi4Stream proto-

col. As shown in Algorithm 1, the input is taken just for

IN PORTS FMs at a time, and is copied on a completely

partitioned buffer. The convolution is done by multiplying the

input buffer values with the respective weights, whose values

are currently defined at design time and therefore hardcoded

in on-chip memory, taking into account the current input

and output FMs to compute. The multiplications results are

then fed into a tree adder (indicated by the reduce function)

and added as a partial result to the relative output value

register. The tree adder is used in order to improve the initial

latency of the core, as it executes the additions on parallel

levels which decrease the pipeline depth. After all the needed

convolutions has been performed, the core sends the results

on the output ports. The PIPELINE directive is applied to all

the internal loops, including also the input/output operations.

5 x 5
1 in FMs

6 out FMs
16 x 16

Conv 1

2 x 2
6 in FMs

6 out FMs
12 x 12

Pool 1

5 x 5
6 in FMs

16 out FMs
6 x 6

Conv 2

64 in
10 out

Lin 1

Fig. 4. Block design of the CNN for the USPS dataset. Each block in the
picture shows the window size, the number of input and output channels
and the number of windows taken as input. For this CNN, the low resource
consumption allowed us to completely parallelize both the first convolutional
and the first sub-sampling layers, with the approach described in Section IV-A.

An additional parameter is added to the directive, that is the

pipeline initiation interval. The interval is computed as

Pipeline II = max(
OUT FM

OUT PORTS
,

IN FM

IN PORTS
) (4)

This additional parameter is then used by the HLS tool to infer

the level of parallelism to apply to the different instructions

which belong to the loop nest. This affects both the total

latency and throughput of the computation core, as well as

the area utilization (mainly in terms of DSPs and LUTs).

B. Fully-connected layer architecture

In order to describe the FCN implementation in the pro-

posed methodology, we have to take into account some initial

considerations. First, the stucture of a FCN is similar to the

structure of a convolutional layer, due to the similar output

dependence on all the input values. In fact, a FCN performs

Multiply-Accumulate operation (MAC) operations on all the

input with the given weights, and this kind of execution can be

described as a 1×1 convolution. Each input value is therefore

seen as a different input channel, and each output value as a

different output channel, all in a 1 × 1 FM and on a 1 × 1
window. Given this assumptions, it seems clear that the FCN

layer implementation can be done by using the same code

and considerations made in Section IV-A. However, given

the unitary window size and the high number of operations

involved, the layer implementation can be optimized with

respect to the one of convolutional layers in order to become

more simple and with a lower resource utilization (with respect

to the number of input and output FMs). In particular, the

unitary window size of this layer makes the filters sequences

of the memory structure not needed. Moreover, due to the
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high number of input and output channel, if the layer was

completely parallelized, it would increase too much the DSP

utilization. In order to face this two issues, we decided to

implement a FCN layer as a single-input-port/single-output-

port convolutional layer. In this way, the number of parallel

multiplications is reduced, while the execution time remains

linearly related to the number of input and output values.

The core accepts a single Axi4Stream interface to receive the

input values of the network, and offers one output interface to

send the output values (which represent the classes or hidden

neurons output values). For each input value, all the 1 × 1
convolutions related to all the output FMs are performed in

the same clock cycle, while the output values are then sent

to the output port sequentially after all the inputs have been

processed.

An issue related to the used data types, in particular with

floating point numbers, has been the high latency of each

accumulation (e.g. 11 clock cycles for floats). In fact, this

latency leads to an infeasible pipelining, as there is no way

to have a unitary initiation interval. In order to overcome this

issue, we added more accumulators and interleaved their use

by exploiting a partial unrolling of the main loop. By using

a higher number of accumulators than the single addition

latency, we reached a lower total latency of the layer, but with

a higher resource utilization. This is an additional reason to

justify the implementation of a single-input-port/single-output-

port version of the layer. The issue does not arise when using

integer values, and will be subject to further study.

C. Network Design

The design of an entire network starts from the choice of

the parameters to set for each module. This choice should

take into consideration the resource utilization of each core

and its total latency, as it will affect the total execution time

of the network like the stage of a pipeline (i.e. the pipeline

interval is its slowest stage time). Indeed, the resulting network

will exactly act like a high-level pipeline. At steady state, all

the different layers of the network will be concurrently active

and computing. This effect becomes especially beneficial when

batches of multiple images feed the network, as will be shown

in the experimental evaluation of Section V.

Many options are offered when instantiating the different

layers, mainly in terms of I/O ports and parallelization. In

this work, we did not perform any DSE and instead we

just determined empirically the levels of parallelization and

therefore the number of I/O ports, essentially to find a layout

that fits on the FPGA chip. Future work will address the

automation of the DSE, also taking into account the possibility

of splitting the layers into many parallel versions, and map

such enlarged network design onto a multi-FPGA system. This

approach should allow large performance improvements, as the

layers can be totally parallelized given that there are enough

available resources, effectively maxing out the achievable

performance For the sub-sampling layer connection, as there

is no combination between FM and rather just a sub-sampling

of each FM, it is possible to insert parallel sub-sampling layer

cores, one for each previous layer output port (with the proper

5 x 5
3 in FMs

12 out FMs
32 x 32

Conv 1

2 x 2
12 in FMs

12 out FMs
28 x 28

Pool 1

5 x 5
12 in FMs

36 out FMs
14 x 14

Conv 2

2 x 2
36 in FMs

36 out FMs
10 x 10

Pool 2

900 in
36 out

Lin 1

36 in
10 out

Lin 2

Fig. 5. Block design of the CNN for the CIFAR-10 dataset. As for Figure 4,
each block in the picture show the window size, the number of input and
output channels and the number of windows taken as input. To fit the entire
CNN design, this time we could not perform any parallelization optimization
within the layers.

memory structure as detailed in Section IV-A). In this way, the

sub-sampling cores act as a standard filter inserted between the

convolutional layers without occupying too much area (perfect

pipelining and no multiple windows/convolutions). The FCN is

implemented in the network design by splitting it in its distinct

layers. For each layer, a single FCN layer core is implemented,

as described in Section IV-B. The distinct layer cores are then

connected sequentially through their I/O ports.

V. EXPERIMENTAL EVALUATION

A. Eperimental setup

To validate the proposed approach, we implemented the

different cores using Vivado HLS and Vivado IPI 2016.3. The

tests have been performed by implementing the designs on a

Xilinx VC707 board [27], mounting a Virtex-7 (xc7vx485t)

FPGA, and running them at a 100MHz frequency.

For each implemented network, a base design has been used

as a support for the testing phase. The design includes a soft-

core processor (Microblaze) coupled with an Axi-Timer, an

Axi4-Interconnect and a DMA to handle the communication

from/to the CNN cores.

B. Test Cases

To evaluate the proposed approach, two different networks

have been designed as test cases.

1) Test Case 1: The first network is composed of 4 different

layers, and is trained and tested with images from the USPS

dataset, composed of handwritten digits (16x16 grayscale im-

ages) from the U.S. Postal Service. In particular, the network

includes a 5x5 convolution layer (1 input - 6 output channels)

a max-pooling layer (2x2 window - 2 pixels stride), a second

convolution layer (5x5 - 6 input - 16 output FMs) and a

single FCN layer with 10 output classes. Given the amount

of available resources and the CNN resource occupation, we

have been able to parallelize completely the first convolutional

and sub-sampling layers, while the second convolutional layer

has been left with a single output port. The network structure

and block design are shown in Figure 4.
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Fig. 6. Mean time to process an image related to the size of the batch of
images. Notice how, in both cases, the high-level pipeline realized within
the network improves the mean time per image when a batch of images is
processed by the CNN. In both tests, the time converges approximatively
when the size of the batch of images becomes greater than the total number
of layers of the CNN. For the sake of readability, we show the results up to
a batch of 50 images, as at that point convergence is already reached.

TABLE I
FPGA RESOURCES USAGE

Resources
Flip-Flops LUT BRAM DSP Slices

Utilization Utilization Utilization Utilization

Test Case 1 41.10% 50.86% 3.50% 55.04%
Test Case 2 61.77% 71.24% 22.82% 74.32%

2) Test Case 2: The second implemented network is quite

larger, and it was trained and tested against images from the

CIFAR-10[19] database (32x32 RGB images). The network is

composed of 6 layers, including a 5x5 convolution layer (3

channels in input and 12 in output), a second convolutional

layer (5x5, 12 input and 36 output FMs), two sub-sampling

layers (2x2 window with 2 pixels stride) and two linear layers,

with 10 classes as the final output. In this case, the convolu-

tional layers require too much area to allow parallelization, so

they have been implemented as the single-input-port/single-

output-port version. The network design and parameters can

be seen in Figure 5.

Both the networks are implemented with single floating

point precision.

C. Results

Table I shows the resources usage of both test cases. Notice

how, as previously stated, the CNN of test case 1 is small

and consumes approximatively less than 50% of the available

resources on the FPGA even with the first convolutional and

sub-sampling layers fully parallelized. The CNN of test case 2

is instead bigger and consumes a higher number of resources,

making impossible to improve performance by parallelizing

the layers.

To validate the high-level pipeline realized by the proposed

approach, we tested both CNNs against an increasingly high

batch of images, from 1 up to 1000. Notice that the datapath

from the DMA towards the CNN is 32 bits wide and the

available bandwidth, for all the performed tests, is 400MB/s.

Figure 6 shows how the mean time per image diminishes with

TABLE II
PERFORMANCE AND POWER EFFICIENCY RESULTS

Dataset GFLOPS Power Efficiency Image Latency Images/sGFLOPS/W (ms)

Test Case 1 USPS 5.2 0.25 0.0058 172414
Test Case 2 CIFAR-10 28.4 1.19 0.128 7809

[28] CIFAR-10 - - - 2318

an increasing number of images per batch, until it converges

to approximatively 5.8 μs for test case 1 and 128.1 μs for test

case 2. In both cases, convergence is reached approximatively

when the size of the batch of images becomes greater than the

total number of layers of the CNN.

Finally, Table II reports performance and power efficiency.

Performance measurements are done taking into account also

data transfers, as they are interleaved with computation. We

perform a comparison between our test case 2, built for the

CIFAR-10 dataset, and the work by Microsoft Research in

[28], the only work, that to the best of our knowledge, is

accelerating a CNN for the same dataset on FPGA, an Altera

Stratix V D5. We are able to yield 3.36x the performance of

[28] with the proposed approach.

With the presented experimental evaluation, we aimed at

validating the proposed methodology and verify the effective-

ness of the high-level pipeline. We tested the approach on

relatively small networks and with a sub-optimal usage of

the available off-chip memory bandwidth. Future work will

address this issue and implement larger CNNs to perform a

proper comparison with the work present in literature.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a modular and scalable approach

to accelerate CNN designs on FPGAs with a dataflow imple-

mentation. This approach is based on previous work on the

acceleration of ISLs [17, 18], as ISLs indeed share some simi-

lar characteristics with convolutions. The resulting accelerator

realizes a high-level pipeline between the different network

layers, which guarantees an increase in performance when the

CNN is employed to process batches of multiple images. It

also realizes an efficient utilization of the on-chip memory,

along with the possibility of scaling each layer from single-

input-port/single-output-port to completely parallel, depending

on the amount of available resources.

We evaluated the proposed approach on two test cases, a

network for the USPS dataset, and a bigger network for the

CIFAR-10 dataset, showing that the average time to process

an image can be improved when the CNN is set to process

batch of images, and tends to converge to a fixed value when

the size of the batch is bigger than the number of layers of

the network.

Future work will focus on different aspects. First, we will

optimize the design itself, to better exploit the available off-

chip memory bandwidth. Second, we will investigate scal-

ability by implementing bigger networks on a multi-FPGA

system, with an automated DSE mechanism. We will then also

test the proposed approach on bigger and more popular CNN

models like AlexNet [2] of VGG [29] to properly compare
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this approach with the ones available in the state of the art.

As last piece of future work, we envision the development

of an automated design flow and its integration into industry-

standard frameworks.
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